Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Identification Of Clinical, Laboratory And Genetic Covariates For Pharmacokinetics, Efficacy And Toxicity Of Sorafenib In Patients With Solid Tumors, Lokesh Jain Aug 2009

Identification Of Clinical, Laboratory And Genetic Covariates For Pharmacokinetics, Efficacy And Toxicity Of Sorafenib In Patients With Solid Tumors, Lokesh Jain

Theses and Dissertations

The goal of this research work was to understand the clinical-pharmacology based treatment approaches for sorafenib. Treatment with sorafenib is associated with high inter-patient variability in pharmacokinetic exposures, efficacy and toxicity. We explored the demographic, laboratory, clinical and pharmacogenetic factors to elucidate the sources of variability. In addition, we examined the impact of pharmacogenetic variation in VEGFR2, an important mediator of the VEGF pathway, on risk of prostate cancer. To support these investigations, (mainly single-dose) pharmacokinetic, pharmacogenetic, efficacy and toxicity information were collected from patients with solid tumors, enrolled in five phase I / II clinical trials at National Cancer …


Vegf-A As An Inhibitor Of Angiogenesis And Methods Of Using Same, Jayakrishna Ambati Jun 2009

Vegf-A As An Inhibitor Of Angiogenesis And Methods Of Using Same, Jayakrishna Ambati

Ophthalmology and Visual Science Faculty Patents

The invention relates to methods and compositions for the treatment or prevention of ocular angiogenesis and neovascularization associated with neovascular disease. Administration of vascular endothelial growth factor (VEGF)-A into the eye when macrophage infiltration is reduced inhibits ocular angiogenesis.


Basement Membrane Proteoglycans: Modulators Par Excellence Of Cancer Growth And Angiogenesis., Renato V. Iozzo, Jason J. Zoeller, Alexander Nyström May 2009

Basement Membrane Proteoglycans: Modulators Par Excellence Of Cancer Growth And Angiogenesis., Renato V. Iozzo, Jason J. Zoeller, Alexander Nyström

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more "active configuration" to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical …


Role Of Syndecan-1 As Key Regulator Of Multiple Myeloma Pathogenesis, Yekaterina Borisovna Khotskaya Jan 2009

Role Of Syndecan-1 As Key Regulator Of Multiple Myeloma Pathogenesis, Yekaterina Borisovna Khotskaya

All ETDs from UAB

Syndecan-1 (CD138), a transmembrane heparan sulfate-bearing proteoglycan, is expressed at high levels on most myeloma cells and is shed into the microenvironment. In patients, high levels of serum syndecan-1 are indicative of poor prognosis and elevation of shed syndecan-1 in animal models dramatically enhances tumor growth, angiogenesis and metastasis. Because syndecan-1 is a key regulator of myeloma pathogenesis, we hypothesized that reduction of syndecan-1 levels expressed by the myeloma cells will block their growth and dissemination. Syndecan-1 knockout and knockdown variants of two human myeloma cell lines, CAG and RPMI-8226, were developed using short hairpin RNA (shRNA) technology. In vitro, …


A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach Jan 2009

A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach

Bioelectrics Publications

We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 mu sec. The application of 300 high-voltage (40 kV/cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to …