Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Developmental biology

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Medicine and Health Sciences

Examining Pi3k-Signaling-Dependent Regulation Of Lens Organelle Free Zone Formation Via Immunolocalization And Immunoblotting In Chick Embryos, Rifah Gheyas, A. Sue Menko Sep 2023

Examining Pi3k-Signaling-Dependent Regulation Of Lens Organelle Free Zone Formation Via Immunolocalization And Immunoblotting In Chick Embryos, Rifah Gheyas, A. Sue Menko

Computational Medicine Center Faculty Papers

The elimination of lens organelles during development, required for mature lens function, is an autophagy-dependent mechanism induced through suppression of PI3K signaling. Here, we present a protocol for investigating the signaling pathways responsible for induction of the formation of this lens organelle free zone. We describe steps for preparation of lens organ culture and use of signaling pathway inhibitors. We then detail procedures for analyzing their impact using both confocal microscopy imaging of immunolabeled lens cryosections and immunoblot approaches. For complete details on the use and execution of this protocol, please refer to Gheyas et al. (2022).


Activity-Dependent Modulation Of Synapse-Regulating Genes In Astrocytes, Isabella Farhy-Tselnicker, Matthew M Boisvert, Hanqing Liu, Cari Dowling, Galina A Erikson, Elena Blanco-Suarez, Chen Farhy, Maxim N Shokhirev, Joseph R Ecker, Nicola J Allen Sep 2021

Activity-Dependent Modulation Of Synapse-Regulating Genes In Astrocytes, Isabella Farhy-Tselnicker, Matthew M Boisvert, Hanqing Liu, Cari Dowling, Galina A Erikson, Elena Blanco-Suarez, Chen Farhy, Maxim N Shokhirev, Joseph R Ecker, Nicola J Allen

Department of Neurosurgery Faculty Papers

Astrocytes regulate the formation and function of neuronal synapses via multiple signals, however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually-evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development are also altered when astrocyte signaling is blunted by diminishing calcium release from …


Pannexin 1 Inhibition Delays Maturation And Improves Development Of Bos Taurus Oocytes, Zachary Timothy Dye, Lauren Virginia Rutledge, Silvia Penuela, Paul William Dyce Aug 2020

Pannexin 1 Inhibition Delays Maturation And Improves Development Of Bos Taurus Oocytes, Zachary Timothy Dye, Lauren Virginia Rutledge, Silvia Penuela, Paul William Dyce

Anatomy and Cell Biology Publications

© 2020 The Author(s). Background: Intercellular exchange between the oocyte and its surrounding cells within the follicular environment is critical for oocyte maturation and subsequent development. In vertebrates this exchange is facilitated through gap junctions formed by connexin membrane proteins. Another family of membrane proteins called pannexins are able to form single membrane channels that allow cellular exchanges with the extracellular environment. The most ubiquitously expressed and studied member, pannexin 1 (PANX1), has yet to be described thoroughly in female reproductive tissues or functionally studied during oocyte maturation. Here, we look into the expression of pannexin 1 in bovine cumulus-oocyte …


Stochastic Expression Of Sae-Dependent Virulence Genes During Staphylococcus Aureus Biofilm Development Is Dependent On Saes, Elizabeth A. Delmain, Derek E. Moormeier, Jennifer L. Endres, Rebecca E. Hodges, Marat R. Sadykov, Alexander R. Horswill, Kenneth W. Bayles Jan 2020

Stochastic Expression Of Sae-Dependent Virulence Genes During Staphylococcus Aureus Biofilm Development Is Dependent On Saes, Elizabeth A. Delmain, Derek E. Moormeier, Jennifer L. Endres, Rebecca E. Hodges, Marat R. Sadykov, Alexander R. Horswill, Kenneth W. Bayles

Journal Articles: Pathology and Microbiology

The intricate process of biofilm formation in the human pathogen Staphylococcus aureus involves distinct stages during which a complex mixture of matrix molecules is produced and modified throughout the developmental cycle. Early in biofilm development, a subpopulation of cells detaches from its substrate in an event termed “exodus” that is mediated by SaePQRS-dependent stochastic expression of a secreted staphylococcal nuclease, which degrades extracellular DNA within the matrix, causing the release of cells and subsequently allowing for the formation of metabolically heterogenous microcolonies. Since the SaePQRS regulatory system is involved in the transcriptional control of multiple S. aureus virulence factors, the …


Hdac Regulates Transcription At The Outset Of Axolotl Tail Regeneration, S. Randal Voss, Larissa V. Ponomareva, Varun B. Dwaraka, Kaitlin E. Pardue, Nour W. Al Haj Baddar, A. Katherine Rodgers, M. Ryan Woodcock, Qingchao Qiu, Anne Crowner, Dana Blichmann, Shivam Khatri, Jon S. Thorson May 2019

Hdac Regulates Transcription At The Outset Of Axolotl Tail Regeneration, S. Randal Voss, Larissa V. Ponomareva, Varun B. Dwaraka, Kaitlin E. Pardue, Nour W. Al Haj Baddar, A. Katherine Rodgers, M. Ryan Woodcock, Qingchao Qiu, Anne Crowner, Dana Blichmann, Shivam Khatri, Jon S. Thorson

Neuroscience Faculty Publications

Tissue regeneration is associated with complex changes in gene expression and post-translational modifications of proteins, including transcription factors and histones that comprise chromatin. We tested 172 compounds designed to target epigenetic mechanisms in an axolotl (Ambystoma mexicanum) embryo tail regeneration assay. A relatively large number of compounds (N = 55) inhibited tail regeneration, including 18 histone deacetylase inhibitors (HDACi). In particular, romidepsin, an FDA-approved anticancer drug, potently inhibited tail regeneration when embryos were treated continuously for 7 days. Additional experiments revealed that romidepsin acted within a very narrow, post-injury window. Romidepsin treatment for only 1-minute post amputation inhibited …


Characterization Of Chemical Uptake And Aryl Hydrocarbon Receptor Mutations In Zebrafish, Jaclyn Paige Souder Jan 2019

Characterization Of Chemical Uptake And Aryl Hydrocarbon Receptor Mutations In Zebrafish, Jaclyn Paige Souder

All ETDs from UAB

In a society driven by technology and industry, we must be increasingly aware of how changes to our environment impact our health. This is especially true concerning embryonic development, which is easily influenced by extra-embryonic factors, including environmental contaminants. Determining how exogenous compounds are absorbed, which receptors they act through, and how these receptors act endogenously is important to fully understand to what extent developmental exposures impact fetal and adult health. I have used the zebrafish model system to address these questions for two classes of environmentally-relevant chemicals—estrogens and dioxins. First, I developed an assay to measure the uptake of …


Map7 Regulates Axon Morphogenesis By Recruiting Kinesin-1 To Microtubules And Modulating Organelle Transport., Stephen R. Tymanskyj, Benjamin Yang, Kristen J. Verhey, Le Ma Aug 2018

Map7 Regulates Axon Morphogenesis By Recruiting Kinesin-1 To Microtubules And Modulating Organelle Transport., Stephen R. Tymanskyj, Benjamin Yang, Kristen J. Verhey, Le Ma

Department of Neuroscience Faculty Papers

Neuronal cell morphogenesis depends on proper regulation of microtubule-based transport, but the underlying mechanisms are not well understood. Here, we report our study of MAP7, a unique microtubule-associated protein that interacts with both microtubules and the motor protein kinesin-1. Structure-function analysis in rat embryonic sensory neurons shows that the kinesin-1 interacting domain in MAP7 is required for axon and branch growth but not for branch formation. Also, two unique microtubule binding sites are found in MAP7 that have distinct dissociation kinetics and are both required for branch formation. Furthermore, MAP7 recruits kinesin-1 dynamically to microtubules, leading to alterations in organelle …


Large, Long Range Tensile Forces Drive Convergence During, David R. Shook, Eric Kasprowicz, Md, Lance A. Davidson, Raymond Keller Mar 2018

Large, Long Range Tensile Forces Drive Convergence During, David R. Shook, Eric Kasprowicz, Md, Lance A. Davidson, Raymond Keller

Division of Internal Medicine Faculty Papers & Presentations

Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 mN during gastrulation and over 4 mN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 mN of tensile force, showing that CT alone generates forces sufficient to close …


Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo Jan 2018

Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo

Bioelectrics Publications

Nanopulse Stimulation (NPS) eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD). With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs). The activation of DCs by dead/dying cells leads to increases …


Oriented Clonal Cell Dynamics Enables Accurate Growth And Shaping Of Vertebrate Cartilage., Marketa Kaucka, Tomas Zikmund, Marketa Tesarova, Daniel Gyllborg, Andreas Hellander, Josef Jaros, Jozef Kaiser, Julian Petersen, Bara Szarowska, Phillip T. Newton, Vyacheslav Dyachuk, Lei Li, Hong Qian, Anne-Sofie Johansson, Yuji Mishina, Joshua D. Currie, Elly M. Tanaka, Alek Erickson, A T. Dudley, Hjalmar Brismar, Paul Southam, Enrico Coen, Min Chen, Lee S. Weinstein, Ales Hampl, Ernest Arenas, Andrei S. Chagin, Kaj Fried, Igor Adameyko Apr 2017

Oriented Clonal Cell Dynamics Enables Accurate Growth And Shaping Of Vertebrate Cartilage., Marketa Kaucka, Tomas Zikmund, Marketa Tesarova, Daniel Gyllborg, Andreas Hellander, Josef Jaros, Jozef Kaiser, Julian Petersen, Bara Szarowska, Phillip T. Newton, Vyacheslav Dyachuk, Lei Li, Hong Qian, Anne-Sofie Johansson, Yuji Mishina, Joshua D. Currie, Elly M. Tanaka, Alek Erickson, A T. Dudley, Hjalmar Brismar, Paul Southam, Enrico Coen, Min Chen, Lee S. Weinstein, Ales Hampl, Ernest Arenas, Andrei S. Chagin, Kaj Fried, Igor Adameyko

Journal Articles: Genetics, Cell Biology & Anatomy

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by …


A Framework To Address Challenges In Communicating The Developmental Origins Of Health And Disease, Liana Winett, Lawrence Wallack, Dawn M. Richardson, Janne Boone-Heinonen, Lynne C. Messer Sep 2016

A Framework To Address Challenges In Communicating The Developmental Origins Of Health And Disease, Liana Winett, Lawrence Wallack, Dawn M. Richardson, Janne Boone-Heinonen, Lynne C. Messer

OHSU-PSU School of Public Health Faculty Publications and Presentations

Findings from the field of Developmental Origins of Health and Disease (DOHaD) suggest that some of the most pressing public health problems facing communities today may begin much earlier than previously understood. In particular, this body of work provides evidence that social, physical, chemical, environmental, and behavioral influences in early life play a significant role in establishing vulnerabilities for chronic disease later in life. Further, because this work points to the importance of adverse environmental exposures that cluster in population groups, it suggests that existing opportunities to intervene at a population level may need to refocus their efforts “upstream” to …


Understanding Early Organogenesis Using A Simplified In Situ Hybridization Protocol In Xenopus, Steven J. Deimling, Rami R. Halabi, Stephanie A. Grover, Jean H. Wang, Thomas A. Drysdale Jan 2015

Understanding Early Organogenesis Using A Simplified In Situ Hybridization Protocol In Xenopus, Steven J. Deimling, Rami R. Halabi, Stephanie A. Grover, Jean H. Wang, Thomas A. Drysdale

Paediatrics Publications

Organogenesis is the study of how organs are specified and then acquire their specific shape and functions during development. The Xenopuslaevis embryo is very useful for studying organogenesis because their large size makes them very suitable for identifying organs at the earliest steps in organogenesis. At this time, the primary method used for identifying a specific organ or primordium is whole mount in situ hybridization with labeled antisense RNA probes specific to a gene that is expressed in the organ of interest. In addition, it is relatively easy to manipulate genes or signaling pathways in Xenopus and in situ hybridization …


Ontogenetic Scaling Patterns And Functional Anatomy Of The Pelvic Limb Musculature In Emus (Dromaius Novaehollandiae), Luis P. Lamas, Russell P. Main, John R. Hutchinson Dec 2014

Ontogenetic Scaling Patterns And Functional Anatomy Of The Pelvic Limb Musculature In Emus (Dromaius Novaehollandiae), Luis P. Lamas, Russell P. Main, John R. Hutchinson

Department of Basic Medical Sciences Faculty Publications

Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area …


Nutritional Requirements For Preterm Infants In Neonatal Intensive Care Units, James Allen Nelson Dec 1996

Nutritional Requirements For Preterm Infants In Neonatal Intensive Care Units, James Allen Nelson

Theses and Dissertations - UTB/UTPA

This thesis reviewed the special caloric requirements of preterm infants. The goal of this research was to investigate the feasibility of using the time required for infants to reach substantial feeding as a possible indicator of future developmental progress. The triage of birth weight, gestational age, and days to first substantive oral feeding were highly significant in predicting development through 12 months of age. However, none of the independent variables contributed significant unique variance in predicting developmental outcome.