Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Medicine and Health Sciences

Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion In Chlamydia Trachomatis And Can Reverse Cassette-Induced Polar Effects, Gabrielle Keb, Robert Hayman, Kenneth A. Fields Dec 2018

Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion In Chlamydia Trachomatis And Can Reverse Cassette-Induced Polar Effects, Gabrielle Keb, Robert Hayman, Kenneth A. Fields

Microbiology, Immunology, and Molecular Genetics Faculty Publications

As obligate intracellular bacteria, Chlamydia spp. have evolved numerous, likely intricate, mechanisms to create and maintain a privileged intracellular niche. Recent progress in elucidating and characterizing these processes has been bolstered by the development of techniques enabling basic genetic tractability. Florescence-reported allelic exchange mutagenesis (FRAEM) couples chromosomal gene deletion with the insertion of a selection cassette encoding antibiotic resistance and green fluorescent protein (GFP). Similar to other bacteria, many chlamydial genes exist within polycistronic operons, raising the possibility of polar effects mediated by insertion cassettes. Indeed, FRAEM-mediated deletion of Chlamydia trachomatis tmeA negatively impacts the expression of tmeB. We …


Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette Dec 2018

Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM …


The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le Dec 2018

The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le

Dissertations & Theses (Open Access)

Breast cancer is the most commonly diagnosed cancer in women in America. Ductal carcinoma in situ (DCIS), one of the earliest pre-invasive forms of invasive ductal carcinoma (IDC), has a 30-50% risk of progressing to IDC. Understanding the mechanisms regulating progression from DCIS to IDC would help identify biomarkers to stratify patients at higher risk of progression or metastasis. Cumulative literature suggests the earliest phase of dissemination from the primary tumor is driven by the epithelial-mesenchymal transition (EMT) program. DEAR1 is a tumor suppressor gene which is mutated, undergoes loss of heterozygosity in breast cancer, and is downregulated in DCIS …


Antibody Epitope Specificity For Dsdna Phosphate Backbone Is An Intrinsic Property Of The Heavy Chain Variable Germline Gene Segment Used, Tatjana Srdic-Rajic, Heinz Kohler, Vladimir Jurisic, Radmila Metlas Oct 2018

Antibody Epitope Specificity For Dsdna Phosphate Backbone Is An Intrinsic Property Of The Heavy Chain Variable Germline Gene Segment Used, Tatjana Srdic-Rajic, Heinz Kohler, Vladimir Jurisic, Radmila Metlas

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Analysis of protein sequences by the informational spectrum method (ISM) enables characterization of their specificity according to encoded information represented with defined frequency (F). Our previous data showed that F(0.367) is characteristic for variable heavy chain (VH) domains (a combination of variable (V), diversity (D) and joining (J) gene segments) of the anti-phosphocholine (PC) T15 antibodies and mostly dependent on the CDR2 region, a site for PC phosphate group binding. Because the T15 dsDNA-reactive U4 mutant also encodes F(0.367), we hypothesized that the same frequency may also be characteristic for anti-DNA antibodies. Data obtained from an analysis of 60 spontaneously …


Transcriptomic Insights On The Virulence-Controlling Csra, Badr, Rpon, And Rpos Regulatory Networks In The Lyme Disease Spirochete, William K. Arnold, Christina R. Savage, Kathryn G. Lethbridge, Trever C. Smith, Catherine A. Brisette, Janakiram Seshu, Brian Stevenson Aug 2018

Transcriptomic Insights On The Virulence-Controlling Csra, Badr, Rpon, And Rpos Regulatory Networks In The Lyme Disease Spirochete, William K. Arnold, Christina R. Savage, Kathryn G. Lethbridge, Trever C. Smith, Catherine A. Brisette, Janakiram Seshu, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B. burgdorferi has evolved a gene regulatory network that ensures transmission between those hosts, along with specific adaptations to niches within each host. Several regulatory proteins are known to be essential for the bacterium to complete these critical tasks, but interactions between regulators had not previously been investigated in detail, due to experimental uses of different strain backgrounds and growth conditions. To address that deficit in knowledge, the transcriptomic impacts of four critical …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …


Insight Into Translational Activation In Yeast Mitochondria, Julia Lynn Jones Aug 2018

Insight Into Translational Activation In Yeast Mitochondria, Julia Lynn Jones

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial function depends on over a thousand proteins, of which the majority are nuclear DNA-encoded and approximately one percent are mitochondrial DNA-encoded. The mitochondrial DNA of Saccharomyces cerevisiae contains eight protein-encoding genes, seven of which are required for proper function of the respiratory complexes and one encodes a ribosomal protein. The bigenomic nature of the oxidative phosphorylation complexes requires coordinated expression and regulation from both the nuclear and the mitochondrial genomes. It is currently unclear how this regulatory network operates. However, it is thought that nuclear genome-encoded messengers localized to the mitochondria aid in this coordination.

A family of proteins …


Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis Aug 2018

Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis

Dissertations & Theses (Open Access)

TP63 and TP73 (which encode p63 and p73, respectively) are highly conserved transcription factors with important roles in development and tissue homeostasis. Similar to their homolog, p53, both p63 and p73 have been shown to mediate tumor suppression in multiple tissue types. Interestingly, however, both genes are expressed as multiple isoforms, which appear to have different and, in many cases, antagonistic functions. Through the use of isoform-specific null alleles of p63 and p73 our lab and others have shown that the full-length N-terminal isoforms of p63 and p73 (referred to as TAp63 and TAp73, respectively) exhibit distinct functions in development, …


The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn Aug 2018

The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn

Electronic Theses and Dissertations

Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered through formation of complexes with close homologs. This work involves the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels and in a tissue-specific manner. They are both nuclear methyltransferases with overlapping target consensus sequences …


Rna-Seq Reveals Transcriptomic Program Associated With Stemness In Taxane Resistant Prostate Cancer, Christina K. Cajigas-Du Ross Aug 2018

Rna-Seq Reveals Transcriptomic Program Associated With Stemness In Taxane Resistant Prostate Cancer, Christina K. Cajigas-Du Ross

Loma Linda University Electronic Theses, Dissertations & Projects

There is no cure for advanced prostate cancer (PCa), and taxane chemotherapy is the only treatment option once other therapies have failed. However, this is problematic since all patients eventually develop chemoresistance. Emerging treatments for advanced PCa have shown promise at the benchside, but clinical trials have not resulted in newly approved drugs due in part to redundant survival pathways utilized by prostate tumor cells to maintain therapy-resistance. Using RNAsequencing—an innovative approach for quantifying gene expression changes—this dissertation sought to elucidate chemoresistance-associated molecular pathways as a catalyst to develop new therapeutic targets. Results revealed a differential upregulation of stemness-associated genes …


A Humanized Hypertrophic Cardiomyopathy Model To Elucidate Molecular Mechanism In Disease Pathology, Ragavi Vijayakumar, Maxine Hong Jun 2018

A Humanized Hypertrophic Cardiomyopathy Model To Elucidate Molecular Mechanism In Disease Pathology, Ragavi Vijayakumar, Maxine Hong

The International Student Science Fair 2018

Hypertrophic cardiomyopathy (HCM), that clinically manifests as an enlarged heart is a highly prevalent cardiac disorder with propensity towards arrhythmia-induced sudden cardiac death. The mechanism of HCM remains poorly defined, necessitating further understanding of the disease for improved therapeutic strategies. As it is challenging to obtain cardiac biopsies from human subjects, using induced pluripotent stem cells technology, we generated cardiomyocytes (CMs) in a dish from HCM patients. These HCM-CMs presented the clinical manifestation in that they were significantly larger in size in comparison to control (healthy)-CMs. Furthermore, gene expression profiling of cardiac ion channels revealed increased transcripts encoding for calcium …


Novel Role Of Prostate Apoptosis Response-4 Tumor Suppressor In B-Cell Chronic Lymphocytic Leukemia, Mary Kathryn Mckenna, Sunil K. Noothi, Sara S. Alhakeem, Karine Z. Oben, Joseph T. Greene, Rajeswaran Mani, Kathryn L. Perry, James P. Collard, Jacqueline R. Rivas, Gerhard C. Hildebrandt, Roger A. Fleischman, Eric B. Durbin, John C. Byrd, Chi Wang, Natarajan Muthusamy, Vivek M. Rangnekar, Subbarao Bondada Jun 2018

Novel Role Of Prostate Apoptosis Response-4 Tumor Suppressor In B-Cell Chronic Lymphocytic Leukemia, Mary Kathryn Mckenna, Sunil K. Noothi, Sara S. Alhakeem, Karine Z. Oben, Joseph T. Greene, Rajeswaran Mani, Kathryn L. Perry, James P. Collard, Jacqueline R. Rivas, Gerhard C. Hildebrandt, Roger A. Fleischman, Eric B. Durbin, John C. Byrd, Chi Wang, Natarajan Muthusamy, Vivek M. Rangnekar, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and …


Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper Jun 2018

Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second …


A Humanized Hypertrophic Cardiomyopathy Model To Elucidate Molecular Mechanism In Disease Pathology, Ragavi Vijayakumar, Maxine Hong Jun 2018

A Humanized Hypertrophic Cardiomyopathy Model To Elucidate Molecular Mechanism In Disease Pathology, Ragavi Vijayakumar, Maxine Hong

The International Student Science Fair 2018

Hypertrophic cardiomyopathy (HCM), that clinically manifests as an enlarged heart is a highly prevalent cardiac disorder with propensity towards arrhythmia-induced sudden cardiac death. The mechanism of HCM remains poorly defined, necessitating further understanding of the disease for improved therapeutic strategies. As it is challenging to obtain cardiac biopsies from human subjects, using induced pluripotent stem cells technology, we generated cardiomyocytes (CMs) in a dish from HCM patients. These HCM-CMs presented the clinical manifestation in that they were significantly larger in size in comparison to control (healthy)-CMs. Furthermore, gene expression profiling of cardiac ion channels revealed increased transcripts encoding for calcium …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Borrelia Burgdorferi Spovg Dna- And Rna-Binding Protein Modulates The Physiology Of The Lyme Disease Spirochete, Christina R. Savage, Brandon L. Jutras, Aaron Bestor, Kit Tilly, Patricia A. Rosa, Yvonne Tourand, Philip E. Stewart, Catherine A. Brissette, Brian Stevenson Jun 2018

Borrelia Burgdorferi Spovg Dna- And Rna-Binding Protein Modulates The Physiology Of The Lyme Disease Spirochete, Christina R. Savage, Brandon L. Jutras, Aaron Bestor, Kit Tilly, Patricia A. Rosa, Yvonne Tourand, Philip E. Stewart, Catherine A. Brissette, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Exposure To Estrogenic Endocrine Disrupting Chemicals And Brain Health, Mark Preciados May 2018

Exposure To Estrogenic Endocrine Disrupting Chemicals And Brain Health, Mark Preciados

FIU Electronic Theses and Dissertations

The overall objective of this dissertation was to examine exposures to the estrogenic endocrine disrupting chemicals (EEDCs), phthalates, bisphenol-A (BPA), and the metalloestrogens cadmium (Cd), arsenic (As), and manganese (Mn) in an older geriatric aged-population and examine associations with brain health. Given the evidence that EEDCs affect brain health and play a role in the development of cognitive dysfunction and neurodegenerative disease, and the constant environmental exposure through foods and everyday products has led this to becoming a great public health concern. Using a bioinformatic approach to find nuclear respiratory factor 1 (NRF1) gene targets involved in mitochondrial dysfunction, that …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Analysis Of Genes Encoded By A Chromosomal Insert In Rickettsia Philipii, Sydney A. Wright May 2018

Analysis Of Genes Encoded By A Chromosomal Insert In Rickettsia Philipii, Sydney A. Wright

Honors College Theses

Background: Spotted Fever group rickettsiae are obligate intracellular arthropod-borne bacteria. Rickettsiae are globally distributed yet typically confined to the distribution of their vector(s). Rickettsia rickettsii and Rickettsia philipii are closely related human pathogens endemic to the United States and cause similar febrile illness with differing morbidity and mortality. Genomic comparison found the presence of a 19 kilobase insert containing eleven genes in Rickettsia philipii. The functions of proteins encoded by this insert are speculated to affect virulence and pathogenicity.

Materials and Methods: Bioinformatic analysis was performed to identify functional motifs in four proteins encoded by the insert. Homologous proteins …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Functional And Structural Impact Of The Loss Of The Leucine-Rich Repeat Protein Lrit1 In The Mouse Retina., Catherine Ann Cobb May 2018

Functional And Structural Impact Of The Loss Of The Leucine-Rich Repeat Protein Lrit1 In The Mouse Retina., Catherine Ann Cobb

Electronic Theses and Dissertations

Mutations in genes encoding the leucine-rich repeat (LRR) proteins nyctalopin and LRIT3 lead to complete congenital stationary night blindness because they are critical to depolarizing bipolar cell function in the retina. LRIT3 has two closely related family members, LRIT1 and LRIT2. In silico analyses of publicly available RNA-Seq data showed that Lrit1 was highly expressed in the retina. Here I describe the expression pattern and impact of loss of LRIT1 on retinal function. To enable these studies, we used CRISPR/Cas9 technology to create an Lrit1-/- mouse line. Retinal morphology and morphometry analyses showed no gross changes in retinal structure …


Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire May 2018

Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire

Dissertations & Theses (Open Access)

Investigations into the function of non-promoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated non-promoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we uncovered an enrichment of DNA methylation sites within the gene body and 3’UTR in which DNA methylation is strongly positively correlated with gene expression. We examined 32 tumor types and identified 57 …


Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander Apr 2018

Genotype-Specific Insertion Of Cytotoxic Genetic Elements Into Cancer Cells, Ryan Englander

University Scholar Projects

The new gene editing system CRISPR/Cas9, composed of a complex composed of a guide RNA and the Cas9 endonuclease, promises to revolutionize biological research and potentially allow clinicians to directly modify patient DNA in vivo. While its applications in the treatment of genetic diseases and in modifying immune cells for immunotherapy are currently being explored, CRISPR/Cas9’s potential utility as a modular system for targeting tumor-specific mutated sequences has not as of yet been explored. While CRISPR/Cas9 is specific enough to target small insertions and deletions or gross chromosomal rearrangements, it is not specific enough to reliably restrict editing to …


Neutrophils From Both Susceptible And Resistant Mice Efficiently Kill Opsonized Listeria Monocytogenes, Michelle G. Pitts, Travis A. Combs, Sarah E. F. D'Orazio Apr 2018

Neutrophils From Both Susceptible And Resistant Mice Efficiently Kill Opsonized Listeria Monocytogenes, Michelle G. Pitts, Travis A. Combs, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Inbred mouse strains differ in their susceptibility to infection with the facultative intracellular bacterium Listeria monocytogenes, largely due to delayed or deficient innate immune responses. Previous antibody depletion studies suggested that neutrophils (polymorphonuclear leukocytes [PMN]) were particularly important for clearance in the liver, but the ability of PMN from susceptible and resistant mice to directly kill L. monocytogenes has not been examined. In this study, we showed that PMN infiltrated the livers of BALB/c/By/J (BALB/c) and C57BL/6 (B6) mice in similar numbers and that both cell types readily migrated toward leukotriene B4 in an in vitro chemotaxis assay. However, …


A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio Mar 2018

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well …


Mrub_1199 & Mrub_2272 Of Meiothermus Ruber Are Orthologous Genes To The B0262 Gene In Escherichia Coli While Mrub_1200, Mrub_1201, Mrub_2015 & Mrub_2271 Are Not Orthologous To The B0262 Gene Coding For The Iron (Fe3+) Abc Transport System, Kumail Hussain, Dr. Lori Scott Jan 2018

Mrub_1199 & Mrub_2272 Of Meiothermus Ruber Are Orthologous Genes To The B0262 Gene In Escherichia Coli While Mrub_1200, Mrub_1201, Mrub_2015 & Mrub_2271 Are Not Orthologous To The B0262 Gene Coding For The Iron (Fe3+) Abc Transport System, Kumail Hussain, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1199, Mrub_1200, Mrub_1201, Mrub_2015, Mrub_2271 and Mrub_2272 (KEGG map number 02010). We predict these genes encode components of an Iron (Fe3+) ATP Binding Cassette (ABC) transporter: 1) Mrub_1199 (DNA coordinates [1211595-1212572] on the reverse strand) encodes the permease component (aka transmembrane domain); and 2) Mrub_1200 (DNA coordinates [1212612-1214093] on the reverse strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1201 (DNA coordinates [1214347-1215309] on the reverse strand) encodes the substrate binding protein (aka the periplasmic component); and Mrub_2015 ( DNA coordinates [2053963-2054949] on the reverse strand) …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Alternative Splicing Of Cytoplasmic Polyadenylation Element Binding Protein 2 Is Modulated Via Serine Arginine Splicing Factor 3 In Cancer Metastasis, James T. Deligio, James Thomas Deligio Jan 2018

Alternative Splicing Of Cytoplasmic Polyadenylation Element Binding Protein 2 Is Modulated Via Serine Arginine Splicing Factor 3 In Cancer Metastasis, James T. Deligio, James Thomas Deligio

Theses and Dissertations

Our laboratory delineated a role for alternative pre-mRNA splicing (AS) in triple negative breast cancer (TNBC). We found the translational regulator cytosolic polyadenylation element binding protein 2 (CPEB2) which has two isoforms, CPEB2A and CPEB2B, is alternatively spliced during acquisition of anoikis resistance (AnR) and metastasis. The splicing event which determines the CPEB2 isoform is via inclusion/ exclusion of exon four in the mature mRNA transcript. The loss of CPEB2A with a concomitant increase in CPEB2B is required for TNBC cells to metastasize in vivo. We examined RNAseq profiles of TNBC cells which had CPEB2 isoforms specifically downregulated to …