Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medicine and Health Sciences

Synlight: A Bicistronic Strategy For Simultaneous Active Zone And Cell Labeling In The Drosophila Nervous System, Michael A. Aimino, Jesse Humenik, Michael J. Parisi, Juan Carlos Duhart, Timothy J. Mosca Sep 2023

Synlight: A Bicistronic Strategy For Simultaneous Active Zone And Cell Labeling In The Drosophila Nervous System, Michael A. Aimino, Jesse Humenik, Michael J. Parisi, Juan Carlos Duhart, Timothy J. Mosca

Farber Institute for Neuroscience Faculty Papers

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent …


Γ-Secretase Promotes Drosophila Postsynaptic Development Through The Cleavage Of A Wnt Receptor, Lucas J Restrepo, Alison T Depew, Elizabeth R Moese, Stephen R Tymanskyj, Michael J Parisi, Michael A Aimino, Juan Carlos Duhart, Hong Fei, Timothy J Mosca Jul 2022

Γ-Secretase Promotes Drosophila Postsynaptic Development Through The Cleavage Of A Wnt Receptor, Lucas J Restrepo, Alison T Depew, Elizabeth R Moese, Stephen R Tymanskyj, Michael J Parisi, Michael A Aimino, Juan Carlos Duhart, Hong Fei, Timothy J Mosca

Farber Institute for Neuroscience Faculty Papers

Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes …


Tau Phosphorylation At Alzheimer's Disease-Related Ser356 Contributes To Tau Stabilization When Par-1/Mark Activity Is Elevated., Kanae Ando, Mikiko Oka, Yosuke Ohtake, Motoki Hayashishita, Sawako Shimizu, Shin-Ichi Hisanaga, Koichi M. Iijima Sep 2016

Tau Phosphorylation At Alzheimer's Disease-Related Ser356 Contributes To Tau Stabilization When Par-1/Mark Activity Is Elevated., Kanae Ando, Mikiko Oka, Yosuke Ohtake, Motoki Hayashishita, Sawako Shimizu, Shin-Ichi Hisanaga, Koichi M. Iijima

Department of Neuroscience Faculty Papers

Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, …


Taranis Functions With Cyclin A And Cdk1 In A Novel Arousal Center To Control Sleep In Drosophila., Dinis J.S. Afonso, Die Liu, Daniel R. Machado, Huihui Pan, James E.C. Jepson, Dragana Rogulja, Kyunghee Koh Jun 2015

Taranis Functions With Cyclin A And Cdk1 In A Novel Arousal Center To Control Sleep In Drosophila., Dinis J.S. Afonso, Die Liu, Daniel R. Machado, Huihui Pan, James E.C. Jepson, Dragana Rogulja, Kyunghee Koh

Department of Neuroscience Faculty Papers

Sleep is an essential and conserved behavior whose regulation at the molecular and anatomical level remains to be elucidated. Here, we identify TARANIS (TARA), a Drosophila homolog of the Trip-Br (SERTAD) family of transcriptional coregulators, as a molecule that is required for normal sleep patterns. Through a forward-genetic screen, we isolated tara as a novel sleep gene associated with a marked reduction in sleep amount. Targeted knockdown of tara suggests that it functions in cholinergic neurons to promote sleep. tara encodes a conserved cell-cycle protein that contains a Cyclin A (CycA)-binding homology domain. TARA regulates CycA protein levels and genetically …


Ash2 Acts As An Ecdysone Receptor Coactivator By Stabilizing The Histone Methyltransferase Trr., Albert Carbonell, Alexander Mazo, Florenci Serras, Montserrat Corominas Jan 2013

Ash2 Acts As An Ecdysone Receptor Coactivator By Stabilizing The Histone Methyltransferase Trr., Albert Carbonell, Alexander Mazo, Florenci Serras, Montserrat Corominas

Department of Biochemistry and Molecular Biology Faculty Papers

The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr …


Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes Feb 2012

Regulation Of A Duplicated Locus: Drosophila Sloppy Paired Is Replete With Functionally Overlapping Enhancers., Miki Fujioka, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

In order to investigate regulation and redundancy within the sloppy paired (slp) locus, we analyzed 30 kilobases of DNA encompassing the tandem, coordinately regulated slp1 and slp2 transcription units. We found a remarkable array of stripe enhancers with overlapping activities surrounding the slp1 transcription unit, and, unexpectedly, glial cell enhancers surrounding slp2. The slp stripe regulatory region generates 7 stripes at blastoderm, and later 14 stripes that persist throughout embryogenesis. Phylogenetic analysis among drosophilids suggests that the multiplicity of stripe enhancers did not evolve through recent duplication. Most of the direct integration among cis-regulatory modules appears to be simply additive, …


Slob, A Slowpoke Channel Binding Protein, Regulates Insulin Pathway Signaling And Metabolism In Drosophila., Amanda L. Sheldon, Jiaming Zhang, Hong Fei, Irwin B Levitan Aug 2011

Slob, A Slowpoke Channel Binding Protein, Regulates Insulin Pathway Signaling And Metabolism In Drosophila., Amanda L. Sheldon, Jiaming Zhang, Hong Fei, Irwin B Levitan

Department of Neuroscience Faculty Papers

There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO) undergoes modulation via its binding partner SLO-binding protein (SLOB). Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs) in the pars intercerebralis (PI) region of the brain; these cells also express and secrete Drosophila insulin like …


Regulation Of Energy Stores And Feeding By Neuronal And Peripheral Creb Activity In Drosophila., Koichi Iijima, Lijuan Zhao, Christopher Shenton, Kanae Iijima-Ando Dec 2009

Regulation Of Energy Stores And Feeding By Neuronal And Peripheral Creb Activity In Drosophila., Koichi Iijima, Lijuan Zhao, Christopher Shenton, Kanae Iijima-Ando

Department of Biochemistry and Molecular Biology Faculty Papers

The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores …