Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology

Cancer

Institution
Publication Year
Publication
Publication Type

Articles 1 - 29 of 29

Full-Text Articles in Medicine and Health Sciences

A Novel Bioactive Peptide, T14, Selectively Activates Mtorc1 Signalling: Therapeutic Implications For Neurodegeneration And Other Rapamycin-Sensitive Applications, Sanskar Ranglani, Anna Ashton, Kashif Mahfooz, Joanna Komorowska, Alexandru Graur, Nadine Kabbani, Sara Garcia-Rates, Susan Greenfield Jun 2023

A Novel Bioactive Peptide, T14, Selectively Activates Mtorc1 Signalling: Therapeutic Implications For Neurodegeneration And Other Rapamycin-Sensitive Applications, Sanskar Ranglani, Anna Ashton, Kashif Mahfooz, Joanna Komorowska, Alexandru Graur, Nadine Kabbani, Sara Garcia-Rates, Susan Greenfield

Journal Articles

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an …


Immunometabolic Reprogramming, Another Cancer Hallmark, Vijay Kumar, John H. Stewart May 2023

Immunometabolic Reprogramming, Another Cancer Hallmark, Vijay Kumar, John H. Stewart

School of Medicine Faculty Publications

Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of …


Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty Jan 2023

Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty

Honors Theses and Capstones

Nearly one out of six deaths in 2020, around ten million people, were caused by cancer, making it a leading cause of death worldwide (WHO, 2022). This major public health issue, in addition to the rise of multidrug-resistant (MDR) pathogens, provides a high demand for the discovery of new pharmaceutical drugs to be used clinically to treat these conditions. The Streptomyces genus accounts to produce 39% of all microbial metabolites currently approved for human health, indicating its potential as an important species to study for antimicrobial and anticancer agents. The long linear genome of Streptomyces contains specialized sequences known as …


Positive Selection And Enhancer Evolution Shaped Lifespan And Body Mass In Great Apes, Daniela Tejada-Martinez, Roberto A Avelar, Inês Lopes, Bruce Zhang, Guy Novoa, João Pedro De Magalhães, Marco Trizzino Feb 2022

Positive Selection And Enhancer Evolution Shaped Lifespan And Body Mass In Great Apes, Daniela Tejada-Martinez, Roberto A Avelar, Inês Lopes, Bruce Zhang, Guy Novoa, João Pedro De Magalhães, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body …


Liquid Biopsy: A Step Closer To Transform Diagnosis, Prognosis And Future Of Cancer Treatments, Saife N. Lone, Sabah Nisar, Tariq Masoodi, Mayank Singh, Arshi Rizwan, Sheema Hashem, Wael El-Rifai, Davide Bedognetti, Surinder K. Batra, Mohammad Haris, Ajaz A. Bhat, Muzafar A. Macha Jan 2022

Liquid Biopsy: A Step Closer To Transform Diagnosis, Prognosis And Future Of Cancer Treatments, Saife N. Lone, Sabah Nisar, Tariq Masoodi, Mayank Singh, Arshi Rizwan, Sheema Hashem, Wael El-Rifai, Davide Bedognetti, Surinder K. Batra, Mohammad Haris, Ajaz A. Bhat, Muzafar A. Macha

Journal Articles: Biochemistry & Molecular Biology

Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly …


Targeting Oncogenic Gαq/11 In Uveal Melanoma, Dominic Lapadula, Jeffrey L Benovic Dec 2021

Targeting Oncogenic Gαq/11 In Uveal Melanoma, Dominic Lapadula, Jeffrey L Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36–50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


The Role Of Ifitm3 In The Immune Response Of Brca-Deficient High Grade Serous Ovarian Carcinoma, Han Cun Aug 2021

The Role Of Ifitm3 In The Immune Response Of Brca-Deficient High Grade Serous Ovarian Carcinoma, Han Cun

Dissertations & Theses (Open Access)

Background: Prior studies showed that BRCA-deficient high grade serous ovarian carcinoma (HGSOC) had increased tumor infiltrating lymphocytes (TILs) compared to BRCA-wildtype (WT). To better understand the underlying immune mechanism in these tumors, a preliminary transcriptome analysis was performed on a set of microdissected HGSOC tumor specimens with BRCA1-mutation, BRCA2-mutation, or WT. This demonstrated an upregulation of IFITM3, an essential gene in modulating immune function. Based on these findings, we hypothesized that BRCA-deficient HGSOC have increased DNA damage leading to upregulation of IFITM3 and subsequent increase in antigen presentation and T-cell activation.

Methods: Following IRB approval, preliminary transcriptome analysis was performed …


The Current Landscape Of Antibody-Based Therapies In Solid Malignancies, Ashu Shah, Sanchita Rauth, Abhijit Aithal, Sukhwinder Kaur, Koelina Ganguly, Catherine Orzechowski, Grish C. Varshney, Maneesh Jain, Surinder K. Batra Jan 2021

The Current Landscape Of Antibody-Based Therapies In Solid Malignancies, Ashu Shah, Sanchita Rauth, Abhijit Aithal, Sukhwinder Kaur, Koelina Ganguly, Catherine Orzechowski, Grish C. Varshney, Maneesh Jain, Surinder K. Batra

Journal Articles: Biochemistry & Molecular Biology

Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for …


Cancer-Targeting Immunostimulatory Peptides As An Immunotherapeutic Approach To Cancer, Rachel Montel Aug 2020

Cancer-Targeting Immunostimulatory Peptides As An Immunotherapeutic Approach To Cancer, Rachel Montel

Seton Hall University Dissertations and Theses (ETDs)

This dissertation reports the synthesis and biological applications of bifunctional trimeric peptides with B7H6-derived NKp30 binding motifs that serve to activate an immunocytotoxic response in natural killer cells and a GRP78-binding motif that can target tumors that express surface GRP78. In this manner the cancer-targeting immunostimulatory peptides are anticipated to directly bind and activate effector NK92-MI cells while also recognizing and binding to target A549 tumor cells to facilitate NK cell-dependent immunocytotoxicity of the targeted tumors. The NKp30 binding peptide motifs are derived from the tumor associated B7H6 antigen that is often downregulated or shed from the surface of tumors …


Editorial: The Role Of Hmgb1 In Immunity, M. Son, B. Diamond, J. Shin Jan 2020

Editorial: The Role Of Hmgb1 In Immunity, M. Son, B. Diamond, J. Shin

Journal Articles

No abstract provided.


Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D. May 2019

Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D.

Honors Scholar Theses

The iron regulatory axis has consistently been shown to be perturbed in cancer cell lines relative to non-cancerous cell lines. As cancer cells rapidly divide and grow, they require iron to fuel many intracellular processes, including DNA replication and protein synthesis. Three-dimensional cell culture is an increasingly popular method of culture that purportedly more accurately mimics the in vivo microenvironment of cancers over traditional two-dimensional culture. This project was prompted by previous lab results to investigate differential iron regulatory gene expression in 2D and 3D spheroid culture models. We replicated the findings that the gene hepcidin is induced in 3D …


Tumor-Derived Extracellular Vesicles Require Β1 Integrins To Promote Anchorage-Independent Growth., Rachel M. Derita, Aejaz Sayeed, Vaughn Garcia, Shiv Ram Krishn, Christopher D. Shields, Srawasti Sarker, Andrea Friedman, Peter Mccue, Sudheer Kumar Molugu, Ulrich Rodeck, Adam P. Dicker, Lucia R. Languino Apr 2019

Tumor-Derived Extracellular Vesicles Require Β1 Integrins To Promote Anchorage-Independent Growth., Rachel M. Derita, Aejaz Sayeed, Vaughn Garcia, Shiv Ram Krishn, Christopher D. Shields, Srawasti Sarker, Andrea Friedman, Peter Mccue, Sudheer Kumar Molugu, Ulrich Rodeck, Adam P. Dicker, Lucia R. Languino

Department of Cancer Biology Faculty Papers

The β1 integrins, known to promote cancer progression, are abundant in extracellular vesicles (EVs). We investigated whether prostate cancer (PrCa) EVs affect anchorage-independent growth and whether β1 integrins are required for this effect. Specifically using a cell-line-based genetic rescue and an in vivo PrCa model, we show that gradient-purified small EVs (sEVs) from either cancer cells or blood from tumor-bearing TRAMP (transgenic adenocarcinoma of the mouse prostate) mice promote anchorage-independent growth of PrCa cells. In contrast, sEVs from cultured PrCa cells harboring a short hairpin RNA to β1, from wild-type mice or from TRAMP mice carrying a β1 conditional ablation …


Targeting The Colchicine Binding Site On Tubulin To Overcome Multidrug Resistance And Anticancer Efficacy Of Selective Survivin Inhibitors, Kinsle E. Arnst Dec 2018

Targeting The Colchicine Binding Site On Tubulin To Overcome Multidrug Resistance And Anticancer Efficacy Of Selective Survivin Inhibitors, Kinsle E. Arnst

Theses and Dissertations (ETD)

Tubulin inhibitors are widely used as chemotherapeutic agents, and their successis attributed to their ability to target microtubule dynamics and disrupt critical cellular functions including cell signaling, motility, intracellular trafficking, and mitosis. Interference with microtubule dynamics consequently disrupts mitotic progression and ultimately leads to apoptosis, validating microtubule dynamics as an excellent target for anticancer agents. While this class of drug has proven to be effective against many cancer types, the clinical efficacy of current tubulin inhibitors is often limited by the development of multidrug resistance. The most common form of resistance to these agents arises from the overexpression of drug …


Molecular Interplay Of Chromatin Remodeling Factor Brg1 And Transcription Factor Stat3 Regulates Stemness, Chemosensitivity And Tumorigenicity Of Glioma Tumor Initiating Cells, Debolina Ganguly Jun 2018

Molecular Interplay Of Chromatin Remodeling Factor Brg1 And Transcription Factor Stat3 Regulates Stemness, Chemosensitivity And Tumorigenicity Of Glioma Tumor Initiating Cells, Debolina Ganguly

Theses and Dissertations (ETD)

Glioblastoma Multiforme (GBM) is an aggressive brain tumor, characterized by high cellular heterogeneity, is refractory to treatment and has dismal prognosis. These characteristics of GBM have suggested the presence of stem-like cells that have the ability to initiate and maintain tumors of a heterogeneous nature, and bestow resistance to current therapeutic regimens. It is therefore imperative to identify the dysregulated molecular pathways which enable the maintenance of these cells in a stem-like state in order to inform strategies to therapeutically target them.

In this study, we investigated the role of the Y705 and S727 phosphorylation domains of STAT3, a multifunctional …


A Lin28b Tumor-Specific Transcript In Cancer, Weijie Guo, Zhixiang Hu, Yichao Bao, Yuchen Li, Shengli Li, Qiupeng Zheng, Dongbin Lyu, Di Chen, Tao Yu, Yan Li, Xiaodong Zhu, Jie Ding, Yingjun Zhao, Xianghuo He, Shenglin Huang Feb 2018

A Lin28b Tumor-Specific Transcript In Cancer, Weijie Guo, Zhixiang Hu, Yichao Bao, Yuchen Li, Shengli Li, Qiupeng Zheng, Dongbin Lyu, Di Chen, Tao Yu, Yan Li, Xiaodong Zhu, Jie Ding, Yingjun Zhao, Xianghuo He, Shenglin Huang

Markey Cancer Center Faculty Publications

The diversity and complexity of the cancer transcriptome may contain transcripts unique to the tumor environment. Here, we report a LIN28B variant, LIN28B-TST, which is specifically expressed in hepatocellular carcinoma (HCC) and many other cancer types. Expression of LIN28B-TST is associated with significantly poor prognosis in HCC patients. LIN28B-TST initiates from a de novo alternative transcription initiation site that harbors a strong promoter regulated by NFYA but not c-Myc. Demethylation of the LIN28B-TST promoter might be a prerequisite for its transcription and transcriptional regulation. LIN28B-TST encodes a protein isoform with additional N-terminal amino acids and is critical for cancer …


Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett Jan 2018

Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett

Internal Medicine Faculty Publications

Nuclear activation of Wnt/β-catenin signaling is required for cell proliferation in inflammation and cancer. Studies from our group indicate that β-catenin activation in colitis and colorectal cancer (CRC) correlates with increased nuclear levels of β-catenin phosphorylated at serine 552 (pβ-Cat552). Biochemical analysis of nuclear extracts from cancer biopsies revealed the existence of low molecular weight (LMW) pβ-Cat552, increased to the exclusion of full size (FS) forms of β-catenin. LMW β-catenin lacks both termini, leaving residues in the armadillo repeat intact. Further experiments showed that TCF4 predominantly binds LMW pβ-Cat552 in the nucleus of inflamed and …


Exploring The Regulatory Mechanism Of The Notch Ligand Receptor Jagged1 Via The Aryl Hydrocarbon Receptor In Breast Cancer, Sean Alan Piwarski Jan 2018

Exploring The Regulatory Mechanism Of The Notch Ligand Receptor Jagged1 Via The Aryl Hydrocarbon Receptor In Breast Cancer, Sean Alan Piwarski

Theses, Dissertations and Capstones

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds pollutants, therapeutic drugs and endogenous ligands. AHR is of particular interest in cancer and has been shown to play roles in both tumor progression and tumor suppression. As a result, it has received growing attention as a possible chemotherapeutic target. AHR is expressed in all breast cancer subtypes and can promote or inhibit breast cancer depending on the ligand it binds. The Notch signaling pathway is a highly conserved evolutionary pathway that plays extremely vital roles during development by regulating cell fate and differentiation. Notch signaling has increasingly …


Genome-Scale Precision Proteomics Identifies Cancer Signaling Networks And Therapeutic Vulnerabilities, Hong Wang May 2017

Genome-Scale Precision Proteomics Identifies Cancer Signaling Networks And Therapeutic Vulnerabilities, Hong Wang

Theses and Dissertations (ETD)

Mass spectrometry (MS) based-proteomics technology has been emerging as an indispensable tool for biomedical research. But the highly diverse physical and chemical properties of the protein building blocks and the dramatic human proteome complexity largely limited proteomic profiling depth. Moreover, there was a lack of high-throughput quantitative strategies that were both precise and parallel to in-depth proteomic techniques. To solve these grand challenges, a high resolution liquid chromatography (LC) system that coupled with an advanced mass spectrometer was developed to allow genome-scale human proteome identification. Using the combination of pre-MS peptide fractionation, MS2-based interference detection and post-MS computational interference correction, …


The Discovery Of A Novel, Ras-Mediated Nore1a/Pmliv Tumor Suppressor Complex., Jessica Mezzanotte Sharpe Aug 2016

The Discovery Of A Novel, Ras-Mediated Nore1a/Pmliv Tumor Suppressor Complex., Jessica Mezzanotte Sharpe

Electronic Theses and Dissertations

Ras is the most commonly activated oncogene in human cancer. Activated Ras drives cell growth and proliferation by activating multiple mitogenic signaling pathways. However, Ras also has the paradoxical ability to promote anti-growth, pro-apoptotic, and pro-senescent signaling. The signaling pathways of many of these biological effectors remain poorly defined. One group of proteins capable of promoting Ras-induced apoptosis and cell cycle arrest is the RASSF family of tumor suppressors. Novel Ras Effector 1A, or NORE1A, was the first member of this family discovered and is a bona fide tumor suppressor that is lost or inactivated in a number of different …


Epacs: Epigenetic Regulators That Affect Cell Survival In Cancer., Catherine Murari Dec 2015

Epacs: Epigenetic Regulators That Affect Cell Survival In Cancer., Catherine Murari

Theses & Dissertations

Cyclic adenosine monophosphate (cAMP) is a second messenger responsive to many external stimuli, playing an important role in cellular gene expression, metabolism, migration, differentiation, hypertrophy, apoptosis and secretion. All of these cellular functions are important in many diseases including cancer. Most of its effects were initially attributed to the classical protein kinase A (PKA) protein, but cellular functions such as proliferation and migration were found to be PKA independent and dependent on the newly discovered exchange proteins directly activated by cAMP (EPACs). EPACs are single polypeptides that primarily function as guanine exchange factors (GEFs) for Rap proteins that allow the …


Targeting Oncogenic Mirnas With Small Molecules For Breast Cancer Therapy, Paloma Del C. Monroig Dec 2015

Targeting Oncogenic Mirnas With Small Molecules For Breast Cancer Therapy, Paloma Del C. Monroig

Dissertations & Theses (Open Access)

The crucial role of microRNAs (miRNAs) in cancer pathobiology has driven the introduction of new drug development approaches such as miRNA inhibition. In order to advance miRNA-therapeutics, there is a need to develop screening strategies that can target tumors in a specific way. Small molecule inhibitors represent an attractive approach to pursue this. However, the absence of molecular structures for most of the miRNAs makes it very difficult to predict which inhibitors can bind to them. Herein we designed a strategy to screen for small molecules by assesing whether they could directly bind/ interact with miR-10b/miR-21. As part of our …


Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra May 2015

Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra

Dissertations & Theses (Open Access)

The anaplastic lymphoma kinase (ALK) is a single chain transmembrane receptor tyrosine kinase that belongs to the insulin receptor superfamily. Other members of this superfamily include the insulin receptor (IR), type I insulin-like growth factor receptor (IGF-IR), and the leukocyte tyrosine kinase. The common structural finding among these tyrosine kinases is the YXXXYY motif present within their respective tyrosine kinase domains. Binding of its ligands causes ALK receptor homodimerization and protein kinase activation. ALK has been previously shown to play a significant role during early developmental stages. In human embryos, the expression of ALK is mainly seen in …


Dual Pi3k/Mtor Inhibition With Bez235 Augments The Therapeutic Efficacy Of Doxorubicin In Cancer Without Influencing Cardiac Function, David E. Durrant Jan 2015

Dual Pi3k/Mtor Inhibition With Bez235 Augments The Therapeutic Efficacy Of Doxorubicin In Cancer Without Influencing Cardiac Function, David E. Durrant

Theses and Dissertations

Cancer continues to be a leading cause death in the United States despite improved treatments. Cancerous lesions form after acquiring oncogenic driver mutations or losing tumor suppressor function in normal cells. Traditional therapies have included use of genotoxic substances that take advantage of the increased growth rate and loss of tumor suppressor function to cause cell death. One such drug is the anthracycline antibiotic doxorubicin (DOX). DOX interchelates into DNA and disrupts transcriptional machinery while also poisoning topoisomerase II. This results in single and double stranded DNA breaks, which if severe enough leads to either necrotic or apoptotic cell death. …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Lrh1 As A Driving Factor For Cancer Development, Alissa M. Margraf May 2014

Lrh1 As A Driving Factor For Cancer Development, Alissa M. Margraf

Senior Honors Projects

LRH1 as a driving factor for cancer development

Alissa Margraf, Qi Tang, Qiushi Lin, Xiaoqun Dong

Department of Biomedical and Pharmaceutical Science, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881 USA

Cancer is a major public health problem worldwide. Colon cancer ranks as the third most common causes of cancer mortality in the United States, with an estimated 96,830 new cases and 50,310 deaths in 2014. Colon cancer develops in the digestive tract where benign growths called polyps transform into malignant tumors. Colon cancer cells invade and destroy nearby tissue and can …


Altered Mucins (Muc) Trafficking In Benign And Malignant Conditions., Suhasini Joshi, Sushil Kumar, Amit Choudhury, Moorthy P. Ponnusamy, Surinder K. Batra Jan 2014

Altered Mucins (Muc) Trafficking In Benign And Malignant Conditions., Suhasini Joshi, Sushil Kumar, Amit Choudhury, Moorthy P. Ponnusamy, Surinder K. Batra

Journal Articles: Biochemistry & Molecular Biology

Mucins are high molecular weight O-glycoproteins that are predominantly expressed at the apical surface of epithelial cells and have wide range of functions. The functional diversity is attributed to their structure that comprises of a peptide chain with unique domains and multiple carbohydrate moieties added during posttranslational modifications. Tumor cells aberrantly overexpress mucins, and thereby promote proliferation, differentiation, motility, invasion and metastasis. Along with their aberrant expression, accumulating evidence suggest the critical role of altered subcellular localization of mucins under pathological conditions due to altered endocytic processes. The mislocalization of mucins and their interactions result in change in the density …


Microrna Function In Human Diseases, Sathish Kumar Natarajan, Mary A. Smith, Cody J. Wehrkamp, Ashley M. Mohr, Justin L. Mott Nov 2013

Microrna Function In Human Diseases, Sathish Kumar Natarajan, Mary A. Smith, Cody J. Wehrkamp, Ashley M. Mohr, Justin L. Mott

Journal Articles: Biochemistry & Molecular Biology

MicroRNAs are emerging as a hot topic in research, and rightfully so. They show great promise as targets of treatment and as markers for common human diseases, such as cancer and metabolic diseases. In this review, we address some of the basic questions regarding micro- RNA function in human disease and the clinical significance of microRNAs. Specifically, micro- RNAs in epigenetics, cancer, and metabolic diseases are discussed, with examples taken from cholangiocarcinoma and nonalcoholic fatty liver disease.


Uv Radiation And The Skin, John A. D'Orazio, Stuart G. Jarrett, Alexandra Amaro-Ortiz, Timothy Scott Jun 2013

Uv Radiation And The Skin, John A. D'Orazio, Stuart G. Jarrett, Alexandra Amaro-Ortiz, Timothy Scott

Toxicology and Cancer Biology Faculty Publications

UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and …