Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic Aug 2015

Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly …


The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger Aug 2015

The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger

Department of Biochemistry and Molecular Biology Faculty Papers

Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.


Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani Feb 2015

Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific …


Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan Jun 2011

Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan

Department of Biochemistry and Molecular Biology Faculty Papers

ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts …


R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala Jul 2009

R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala

Department of Dermatology and Cutaneous Biology Faculty Papers

We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant …


Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson Nov 2006

Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson

Department of Biochemistry and Molecular Biology Faculty Papers

Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of …