Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Medicine and Health Sciences

Cryo-Em Structure Of The Human Kv3.1 Channel Reveals Gating Control By The Cytoplasmic T1 Domain, Gamma Chi, Qiansheng Liang, Akshay Sridhar, John B Cowgill, Kasim Sader, Mazdak Radjainia, Pu Qian, Pablo Castro-Hartmann, Shayla Venkaya, Nanki Kaur Singh, Gavin Mckinley, Alejandra Fernandez-Cid, Shubhashish M M Mukhopadhyay, Nicola A Burgess-Brown, Lucie Delemotte, Manuel Covarrubias, Katharina L Dürr Jul 2022

Cryo-Em Structure Of The Human Kv3.1 Channel Reveals Gating Control By The Cytoplasmic T1 Domain, Gamma Chi, Qiansheng Liang, Akshay Sridhar, John B Cowgill, Kasim Sader, Mazdak Radjainia, Pu Qian, Pablo Castro-Hartmann, Shayla Venkaya, Nanki Kaur Singh, Gavin Mckinley, Alejandra Fernandez-Cid, Shubhashish M M Mukhopadhyay, Nicola A Burgess-Brown, Lucie Delemotte, Manuel Covarrubias, Katharina L Dürr

Department of Neuroscience Faculty Papers

Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and …


Motifs Of Vdac2 Required For Mitochondrial Bak Import And Tbid-Induced Apoptosis., Shamim Naghdi, Péter Várnai, György Hajnóczky Oct 2015

Motifs Of Vdac2 Required For Mitochondrial Bak Import And Tbid-Induced Apoptosis., Shamim Naghdi, Péter Várnai, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Voltage-dependent anion channel (VDAC) proteins are major components of the outer mitochondrial membrane. VDAC has three isoforms with >70% sequence similarity and redundant roles in metabolite and ion transport. However, only Vdac2(-/-) (V2(-/-)) mice are embryonic lethal, indicating a unique and fundamental function of VDAC2 (V2). Recently, a specific V2 requirement was demonstrated for mitochondrial Bak import and truncated Bid (tBid)-induced apoptosis. To determine the relevant domain(s) of V2 involved, VDAC1 (V1) and V2 chimeric constructs were created and used to rescue V2(-/-) fibroblasts. Surprisingly, the commonly cited V2-specific N-terminal extension and cysteines were found to be dispensable for Bak …


Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic Aug 2015

Atomic Structure Of Grk5 Reveals Distinct Structural Features Novel For G Protein-Coupled Receptor Kinases, Konstantin E. Komolov, Anshul Bhardwaj, Jeffrey L. Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly …


The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger Aug 2015

The Rise And Fall Of Poly(Adp-Ribose): An Enzymatic Perspective., John M. Pascal, Tom Ellenberger

Department of Biochemistry and Molecular Biology Faculty Papers

Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.


Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani Feb 2015

Diversification Of Importin-Α Isoforms In Cellular Trafficking And Disease States., Ruth A. Pumroy, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific …


Caveolin-1 Deficiency Induces Spontaneous Endothelial-To-Mesenchymal Transition In Murine Pulmonary Endothelial Cells In Vitro., Zhaodong Li, Peter J. Wermuth, Bryan S. Benn, Michael P. Lisanti, Sergio A. Jimenez Feb 2013

Caveolin-1 Deficiency Induces Spontaneous Endothelial-To-Mesenchymal Transition In Murine Pulmonary Endothelial Cells In Vitro., Zhaodong Li, Peter J. Wermuth, Bryan S. Benn, Michael P. Lisanti, Sergio A. Jimenez

Jefferson Institute of Molecular Medicine Papers and Presentations

It was previously demonstrated that transforming growth factor β (TGF-β) induces endothelial-to-mesenchymal transition (EndoMT) in murine lung endothelial cells (ECs) in vitro. Owing to the important role of caveolin-1 (CAV1) in TGF-β receptor internalization and TGF-β signaling, the participation of CAV1 in the induction of EndoMT in murine lung ECs was investigated. Pulmonary ECs were isolated from wild-type and Cav1 knockout mice using immunomagnetic methods with sequential anti-CD31 and anti-CD102 antibody selection followed by in vitro culture and treatment with TGF-β1. EndoMT was assessed by semiquantitative RT-PCR for Acta2, Col1a1, Snai1, and Snai2; by immunofluorescence for α-smooth muscle actin; and …


Identification Of Phosphorylation Sites In The Cooh-Terminal Tail Of The Μ-Opioid Receptor., Ying-Ju Chen, Sue Oldfield, Adrian J. Butcher, Andrew B. Tobin, Kunal Saxena, Vsevolod V. Gurevich, Jeffrey L. Benovic, Graeme Henderson, Eamonn Kelly Jan 2013

Identification Of Phosphorylation Sites In The Cooh-Terminal Tail Of The Μ-Opioid Receptor., Ying-Ju Chen, Sue Oldfield, Adrian J. Butcher, Andrew B. Tobin, Kunal Saxena, Vsevolod V. Gurevich, Jeffrey L. Benovic, Graeme Henderson, Eamonn Kelly

Department of Biochemistry and Molecular Biology Faculty Papers

Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C-terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK-293) cells. Under basal conditions, MOPr is phosphorylated on Ser(363) and Thr(370), while in the presence of morphine or [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser(356) , Thr(357) and Ser(375). Using N-terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C-terminal tail of MOPr and point mutations of the same, we …


Perlecan Domain V Induces Vegf Secretion In Brain Endothelial Cells Through Integrin Α5Β1 And Erk-Dependent Signaling Pathways., Douglas N Clarke, Abraham Al Ahmad, Boyeon Lee, Christi Parham, Lisa Auckland, Andrezj Fertala, Michael Kahle, Courtney S Shaw, Jill Roberts, Gregory J Bix Sep 2012

Perlecan Domain V Induces Vegf Secretion In Brain Endothelial Cells Through Integrin Α5Β1 And Erk-Dependent Signaling Pathways., Douglas N Clarke, Abraham Al Ahmad, Boyeon Lee, Christi Parham, Lisa Auckland, Andrezj Fertala, Michael Kahle, Courtney S Shaw, Jill Roberts, Gregory J Bix

Department of Dermatology and Cutaneous Biology Faculty Papers

Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α(5)β(1) integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV's angio-modulatory activity outside of the brain, binds poorly to α(5)β(1) and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV's DGR sequence as an important element for the interaction …


Cardiac G-Protein-Coupled Receptor Kinase 2 Ablation Induces A Novel Ca2+ Handling Phenotype Resistant To Adverse Alterations And Remodeling After Myocardial Infarction., Philip W Raake, Xiaoying Zhang, Leif E Vinge, Henriette Brinks, Erhe Gao, Naser Jaleel, Yingxin Li, Mingxin Tang, Patrick Most, Gerald W Dorn, Steven R Houser, Hugo A Katus, Xiongwen Chen, Walter J Koch May 2012

Cardiac G-Protein-Coupled Receptor Kinase 2 Ablation Induces A Novel Ca2+ Handling Phenotype Resistant To Adverse Alterations And Remodeling After Myocardial Infarction., Philip W Raake, Xiaoying Zhang, Leif E Vinge, Henriette Brinks, Erhe Gao, Naser Jaleel, Yingxin Li, Mingxin Tang, Patrick Most, Gerald W Dorn, Steven R Houser, Hugo A Katus, Xiongwen Chen, Walter J Koch

Center for Translational Medicine Faculty Papers

BACKGROUND: G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study.

METHODS AND RESULTS: Myocyte contractility, Ca(2+) handling and excitation-contraction coupling were studied in isolated cardiomyocytes from wild-type and GRK2 knockout (GRK2KO) mice without (sham) or with myocardial infarction (MI). In cardiac myocytes isolated from unstressed wild-type and GRK2KO hearts, myocyte contractions and Ca(2+) transients were similar, but GRK2KO myocytes had lower sarcoplasmic reticulum (SR) Ca(2+) content …


Identification Of The Functional Binding Pocket For Compounds Targeting Small-Conductance Ca²⁺-Activated Potassium Channels., Miao Zhang, John M Pascal, Marcel Schumann, Roger S Armen, Ji-Fang Zhang Jan 2012

Identification Of The Functional Binding Pocket For Compounds Targeting Small-Conductance Ca²⁺-Activated Potassium Channels., Miao Zhang, John M Pascal, Marcel Schumann, Roger S Armen, Ji-Fang Zhang

Department of Molecular Physiology and Biophysics Faculty Papers

Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. …


Systemic Adiponectin Malfunction As A Risk Factor For Cardiovascular Disease., Wayne Bond Lau, Ling Tao, Yajing Wang, Rong Li, Xin L Ma Oct 2011

Systemic Adiponectin Malfunction As A Risk Factor For Cardiovascular Disease., Wayne Bond Lau, Ling Tao, Yajing Wang, Rong Li, Xin L Ma

Department of Emergency Medicine Faculty Papers

Adiponectin (Ad) is an abundant protein hormone regulatory of numerous metabolic processes. The 30 kDa protein originates from adipose tissue, with full-length and globular domain circulatory forms. A collagenous domain within Ad leads to spontaneous self-assemblage into various oligomeric isoforms, including trimers, hexamers, and high-molecular-weight multimers. Two membrane-spanning receptors for Ad have been identified, with differing concentration distribution in various body tissues. The major intracellular pathway activated by Ad includes phosphorylation of AMP-activated protein kinase, which is responsible for many of Ad's metabolic regulatory, anti-inflammatory, vascular protective, and anti-ischemic properties. Additionally, several AMP-activated protein kinase-independent mechanisms responsible for Ad's anti-inflammatory …


Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan Jun 2011

Structure Of The Atp Synthase Catalytic Complex (F(1)) From Escherichia Coli In An Autoinhibited Conformation., Gino Cingolani, Thomas M Duncan

Department of Biochemistry and Molecular Biology Faculty Papers

ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts …


Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli Jan 2010

Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of …


R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala Jul 2009

R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala

Department of Dermatology and Cutaneous Biology Faculty Papers

We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant …


Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson Nov 2006

Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson

Department of Biochemistry and Molecular Biology Faculty Papers

Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of …


Distinct P53 Acetylation Cassettes Differentially Influence Gene-Expression Patterns And Cell Fate., Chad D Knights, Jason Catania, Simone Di Giovanni, Selen Muratoglu, Ricardo Perez, Amber Swartzbeck, Andrew A Quong, Xiaojing Zhang, Terry Beerman, Richard Pestell, Maria Laura Avantaggiati May 2006

Distinct P53 Acetylation Cassettes Differentially Influence Gene-Expression Patterns And Cell Fate., Chad D Knights, Jason Catania, Simone Di Giovanni, Selen Muratoglu, Ricardo Perez, Amber Swartzbeck, Andrew A Quong, Xiaojing Zhang, Terry Beerman, Richard Pestell, Maria Laura Avantaggiati

Kimmel Cancer Center Faculty Papers

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH(2)-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH(2)-terminal residues and enhances the interaction with …


Voltage-Dependent Gating Rearrangements In The Intracellular T1-T1 Interface Of A K+ Channel., Guangyu Wang, Manuel Covarrubias Apr 2006

Voltage-Dependent Gating Rearrangements In The Intracellular T1-T1 Interface Of A K+ Channel., Guangyu Wang, Manuel Covarrubias

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The intracellular tetramerization domain (T1) of most eukaryotic voltage-gated potassium channels (Kv channels) exists as a "hanging gondola" below the transmembrane regions that directly control activation gating via the electromechanical coupling between the S4 voltage sensor and the main S6 gate. However, much less is known about the putative contribution of the T1 domain to Kv channel gating. This possibility is mechanistically intriguing because the T1-S1 linker connects the T1 domain to the voltage-sensing domain. Previously, we demonstrated that thiol-specific reagents inhibit Kv4.1 channels by reacting in a state-dependent manner with native Zn(2+) site thiolate groups in the T1-T1 interface; …


Functionally Active T1-T1 Interfaces Revealed By The Accessibility Of Intracellular Thiolate Groups In Kv4 Channels., Guangyu Wang, Mohammad Shahidullah, Carmen A Rocha, Candace Strang, Paul J Pfaffinger, Manuel Covarrubias Jul 2005

Functionally Active T1-T1 Interfaces Revealed By The Accessibility Of Intracellular Thiolate Groups In Kv4 Channels., Guangyu Wang, Mohammad Shahidullah, Carmen A Rocha, Candace Strang, Paul J Pfaffinger, Manuel Covarrubias

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is …


Hinderin, A Five-Domains Protein Including Coiled-Coil Motifs That Binds To Smc3., Chirag A Patel, Giancarlo Ghiselli Jan 2005

Hinderin, A Five-Domains Protein Including Coiled-Coil Motifs That Binds To Smc3., Chirag A Patel, Giancarlo Ghiselli

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The structural maintenance of chromosome proteins SMC1 and SMC3 play an important role in the maintenance of chromosomal integrity by preventing the premature separation of the sister chromatids at the onset of anaphase. The two proteins are constitutive components of the multimeric complex cohesin and form dimers by interacting at their central globular regions. RESULTS: In order to identify proteins that by binding to SMC3 may interfere with the protein dimerization process, a human cDNA library was screened by the yeast two-hybrid system by using the hinge region of SMC3 as bait. This has lead to the identification of …


Proteolytic Release Of Cd44 Intracellular Domain And Its Role In The Cd44 Signaling Pathway., I Okamoto, Y Kawano, D Murakami, T Sasayama, N Araki, T Miki, A J Wong, H Saya Nov 2001

Proteolytic Release Of Cd44 Intracellular Domain And Its Role In The Cd44 Signaling Pathway., I Okamoto, Y Kawano, D Murakami, T Sasayama, N Araki, T Miki, A J Wong, H Saya

Department of Microbiology and Immunology Faculty Papers

CD44 is a widely distributed cell surface adhesion molecule and is implicated in diverse biological processes. However, the nature of intracellular signaling triggered by CD44 remains to be elucidated. Here, we show that CD44 undergoes sequential proteolytic cleavage in the ectodomain and intracellular domain, resulting in the release of a CD44 intracellular domain (ICD) fragment. Consequently, CD44ICD acts as a signal transduction molecule, where it translocates to the nucleus and activates transcription mediated through the 12-O-tetradecanoylphorbol 13-acetate-responsive element, which is found in numerous genes involved in diverse cellular processes. Expression of an uncleavable CD44 mutant as well as metalloprotease inhibitor …


Phosphoinositide-Ap-2 Interactions Required For Targeting To Plasma Membrane Clathrin-Coated Pits., I Gaidarov, James H. Keen Aug 1999

Phosphoinositide-Ap-2 Interactions Required For Targeting To Plasma Membrane Clathrin-Coated Pits., I Gaidarov, James H. Keen

Department of Microbiology and Immunology Faculty Papers

The clathrin-associated AP-2 adaptor protein is a major polyphosphoinositide-binding protein in mammalian cells. A high affinity binding site has previously been localized to the NH(2)-terminal region of the AP-2 alpha subunit (Gaidarov et al. 1996. J. Biol. Chem. 271:20922-20929). Here we used deletion and site- directed mutagenesis to determine that alpha residues 21-80 comprise a discrete folding and inositide-binding domain. Further, positively charged residues located within this region are involved in binding, with a lysine triad at positions 55-57 particularly critical. Mutant peptides and protein in which these residues were changed to glutamine retained wild-type structural and functional characteristics by …