Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 54

Full-Text Articles in Medicine and Health Sciences

Student Self-Grading Form, Brett Whysel Jun 2022

Student Self-Grading Form, Brett Whysel

Open Educational Resources

This is a word document that students use at the beginning, midpoint, and end of a semester to set relevant goals, measure progress towards goals, and self-grade. It is intended to build motivation, metacognition, and accountability. Instructors may use it on its own or to supplement other assessment tools, and improve the accuracy, validity, and fairness of final grades.


Recent Advances In Bone Research 2022 Edition, Jean-Philippe Berteau, Laurent Pujo-Menjouet May 2022

Recent Advances In Bone Research 2022 Edition, Jean-Philippe Berteau, Laurent Pujo-Menjouet

Publications and Research

More and more scientific and engineering applications in bone research make pivotal advances in treating patients with orthopedics issues. Hence, bone research in the 21st century combines, inter alia, biology, chemistry, mathematics, and mechanics with complementary characteristics that help a holistic approach to bone-related pathologies. Nowadays, it is hard to connect new evidence when jargoning and money remain two significant obstacles to sharing knowledge. “Recent Advances In Bone Research” is a free book – no money involved at any stage - that combines the most recent efforts in bone research from several experts with different backgrounds, every expert seeks to …


Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya Jan 2022

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya

Publications and Research

Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson’s disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD.

Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms.

Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were …


Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn Jan 2022

Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn

Publications and Research

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme …


Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative Jan 2022

Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative

Publications and Research

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient’s ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current …


Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm Jan 2022

Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm

Publications and Research

The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to …


Exosome- And Microrna-Based Therapeutic Approach For Tendinopathy, Angela Wang Ilaltdinov Jan 2022

Exosome- And Microrna-Based Therapeutic Approach For Tendinopathy, Angela Wang Ilaltdinov

Dissertations and Theses

Tendinopathy, characterized by degeneration and chronic inflammation, is a significant clinical burden. Current treatments focus on symptom management but do not sufficiently address its underlying pathology; however, stem cell-based approaches aimed at repairing diseased tissues may overcome this limitation. Therapeutic effects of stem cells may be due in part to paracrine actions, including some mediated by exosomes – extracellular vesicles secreted by cells that play a role in cell communication. MicroRNA (miRNA), small non-coding RNA carried by exosomes, are likely responsible for many exosome effects. Exosomes and miRNA therapies show promise in treating diseases such as cancer and arthritis, but …


Comparative Analysis Of 3d Printed Denture Resins With Traditional Denture Materials At The Micro Level, Aneeza Hussain, Caleb Beckwith, Gaffar Gailani Dec 2021

Comparative Analysis Of 3d Printed Denture Resins With Traditional Denture Materials At The Micro Level, Aneeza Hussain, Caleb Beckwith, Gaffar Gailani

Publications and Research

The aim of this experiment was to evaluate and identify compression strength between traditionally manufactured acrylic dentures and additive manufacturing resin dentures. Specifically, the dentures produced by Uhler Dental, its Reveal line were compared against samples produced on the Formlabs Form 2 SLA, Stereolithography, 3D printer using their Denture Teeth A2 resin to test compression strength to assure they are compatible with the occlusal forces in the oral cavity. Using the ZwickRoell tensile testing machine, it appeared that the acrylic dentures were half as strong as the resin dentures. Then we went ahead to and did a comparative analysis under …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


No Ordinary Proteins: Adsorption And Molecular Orientation Of Monoclonal Antibodies, Ankit D. Kanthe, Andrew Ilott, Mary Krause, Songyan Zheng, Jinjiang Li, Wei Bu, Mrinal K. Bera, Binhua Lin, Charles Maldarelli, Raymond S. Tu Aug 2021

No Ordinary Proteins: Adsorption And Molecular Orientation Of Monoclonal Antibodies, Ankit D. Kanthe, Andrew Ilott, Mary Krause, Songyan Zheng, Jinjiang Li, Wei Bu, Mrinal K. Bera, Binhua Lin, Charles Maldarelli, Raymond S. Tu

Publications and Research

The interaction of monoclonal antibodies (mAbs) with air/water interfaces plays a crucial role in their overall stability in solution. We aim to understand this behavior using pendant bubble measurements to track the dynamic tension reduction and x-ray reflectivity to obtain the electron density profiles (EDPs) at the surface. Native immunoglobulin G mAb is a rigid molecule with a flat, “Y” shape, and simulated EDPs are obtained by rotating a homology construct at the surface. Comparing simulations with experimental EDPs, we obtain surface orientation probability maps showing mAbs transition from flat-on Y-shape configurations to side-on or end-on configurations with increasing concentration. …


Association Of X-Ray Absorptiometry Body Composition Measurements With Basic Anthropometrics And Mortality Hazard, Nir Y. Krakauer, Jesse C. Krakauer Jul 2021

Association Of X-Ray Absorptiometry Body Composition Measurements With Basic Anthropometrics And Mortality Hazard, Nir Y. Krakauer, Jesse C. Krakauer

Publications and Research

Dual-energy X-ray absorptiometry (DEXA) is a non-invasive imaging modality that can estimate whole-body and regional composition in terms of fat, lean, and bone mass. We examined the ability of DEXA body composition measures (whole-body, trunk, and limb fat mass and fat-free mass) to predict mortality in conjunction with basic body measures (anthropometrics), expressed using body mass index (BMI) and a body shape index (ABSI). We used data from the 1999–2006 United States National Health and Nutrition Examination Survey (NHANES), with mortality follow-up to 2015. We found that all DEXA-measured masses were highly correlated with each other and with ABSI and …


A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero Jul 2021

A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero

Publications and Research

There is no cure for osteogenesis imperfecta (OI), and current treatments can only partially correct the bone phenotype. Stem cell therapy holds potential to improve bone quality and quantity in OI. Here, we conduct a systematic review and meta-analysis of published studies to investigate the efficacy of stem cell therapy to rescue bone brittleness in mouse models of OI. Identified studies included bone marrow, mesenchymal stem cells, and human fetal stem cells. Effect size of fracture incidence, maximum load, stiffness, cortical thickness, bone volume fraction, and raw engraftment rates were pooled in a random-effects meta-analysis. Cell type, cell number, injection …


Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano Jul 2021

Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano

Publications and Research

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called “conventional” tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg− 1 min− …


Preventing Transmission Of Covid 19 In Hvac Duct Systems: Implementations Of Hvac System Design Upgrade, Jacob S. Lopez, Adama Barro Jun 2021

Preventing Transmission Of Covid 19 In Hvac Duct Systems: Implementations Of Hvac System Design Upgrade, Jacob S. Lopez, Adama Barro

Publications and Research

The recent pandemic outbreak has triggered a global alarm to increase efforts on finding the best methods to mitigate contagious viral pathogens. This project is a continuation of our mission to study engineering guidelines needed to implement upgrades to HVAC Systems in order to deter airborne pathogens such as the covid-19 virus. In our previous projects we researched how covid-19 can possibly flow through the ambient air inside of restaurants, office spaces, and locomotive train cabins. As we continued our research, we were able to find some solutions that will be best used to deactivate and prevent the virus from …


Detection Methods And Clinical Applications Of Circulating Tumor Cells In Breast Cancer, Hongyi Zhang, Xiaoyan Lin, Yuan Huang, Minghong Wang, Chunmei Cen, Shasha Tang, Marcia R. Dique, Lu Cai, Manuel A. Luis, Jillian Smollar, Yuan Wan, Fengfeng Cai Jun 2021

Detection Methods And Clinical Applications Of Circulating Tumor Cells In Breast Cancer, Hongyi Zhang, Xiaoyan Lin, Yuan Huang, Minghong Wang, Chunmei Cen, Shasha Tang, Marcia R. Dique, Lu Cai, Manuel A. Luis, Jillian Smollar, Yuan Wan, Fengfeng Cai

Publications and Research

Circulating Tumor Cells (CTCs) are cancer cells that split away from the primary tumor and appear in the circulatory system as singular units or clusters, which was first reported by Dr. Thomas Ashworth in 1869. CTCs migrate and implantation occurs at a new site, in a process commonly known as tumor metastasis. In the case of breast cancer, the tumor cells often migrate into locations such as the lungs, brain, and bones, even during the early stages, and this is a notable characteristic of breast cancer. Survival rates have increased significantly over the past few decades because of progress made …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environment - Part 2: Approaches To Mitigation, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore May 2021

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environment - Part 2: Approaches To Mitigation, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

The challenge we face in implementing solutions for new HVAC ventilation and filtration design, is to effectively improve air quality for virus mitigation without losing performance efficiency. The purpose of this improvement is to decontaminate the occupied enclosed areas, reducing the transmission of the corona virus aerosol transmission. Our research seeks reliable approaches to mitigate the further spread of aerosol transmission in indoor spaces. The methodology is to examine innovative HVAC engineering solutions that combat epidemiological problems of Covid-19 for the post-pandemic era, by researching scholarly articles and ASHRAE journals. We are achieving the goal of finding highly efficient resolutions …


Nanoanalytical Analysis Of Bisphosphonate-Driven Alterations Of Microcalcifications Using A 3d Hydrogel System And In Vivo Mouse Model, Jessica L. Ruiz, Joshua D. Hutcheson, Luis Cardoso, Amirala Bakhshian Nik, Alexandra Condado De Abreu, Tan Pham, Fabrizio Buffolo, Sara Busatto, Stefania Frederici, Andrea Ridolfi, Masanori Aikawa, Sergio Bertazzo, Paolo Bergese, Sheldon Weinbaum, Elena Aikawa Apr 2021

Nanoanalytical Analysis Of Bisphosphonate-Driven Alterations Of Microcalcifications Using A 3d Hydrogel System And In Vivo Mouse Model, Jessica L. Ruiz, Joshua D. Hutcheson, Luis Cardoso, Amirala Bakhshian Nik, Alexandra Condado De Abreu, Tan Pham, Fabrizio Buffolo, Sara Busatto, Stefania Frederici, Andrea Ridolfi, Masanori Aikawa, Sergio Bertazzo, Paolo Bergese, Sheldon Weinbaum, Elena Aikawa

Publications and Research

Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE−/− mouse was used …


Slowing The Spread Of Covid-19: Review Of “Social Distancing” Interventions Deployed By Public Transit In The United States And Canada, Camille Kamga, Penny Eickemeyer Mar 2021

Slowing The Spread Of Covid-19: Review Of “Social Distancing” Interventions Deployed By Public Transit In The United States And Canada, Camille Kamga, Penny Eickemeyer

Publications and Research

This paper presents a review of social distancing measures deployed by transit agencies in the United States and Canada during the COVID-19 pandemic and discusses how specific operators across the two countries have implemented changes. Challenges and impacts on their operations are also provided.

Social distancing is one of the community mitigation measures traditionally implemented during influenza pandemics and the novel coronavirus pandemic. Research has shown that social distancing is effective in containing the spread of disease. This is applicable to the current situation with the novel coronavirus, given the lack of effective vaccines and treatments in the United States …


A Bisphosphonate With A Low Hydroxyapatite Binding Affinity Prevents Bone Loss In Mice After Ovariectomy And Reverses Rapidly With Treatment Cessation, Abigail A. Coffman, Jelena Basta-Pljakic, Rosa M. Guerra, Frank H. Ebetino, Mark W. Lundy, Robert J. Majeska, Mitchell B. Schaffler Feb 2021

A Bisphosphonate With A Low Hydroxyapatite Binding Affinity Prevents Bone Loss In Mice After Ovariectomy And Reverses Rapidly With Treatment Cessation, Abigail A. Coffman, Jelena Basta-Pljakic, Rosa M. Guerra, Frank H. Ebetino, Mark W. Lundy, Robert J. Majeska, Mitchell B. Schaffler

Publications and Research

Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long-term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half-lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition …


Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine Jan 2021

Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine

Publications and Research

Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a …


Restoration Of Bone Material And Microstructural Properties After Long-Term Remodeling Suppression, Abigail A. Coffman Jan 2021

Restoration Of Bone Material And Microstructural Properties After Long-Term Remodeling Suppression, Abigail A. Coffman

Dissertations and Theses

Anti-resorptive drugs, principally bisphosphonates (BPs), are the mainstay of osteoporosis treatment. They work by inhibiting bone resorption/remodeling, thus preventing bone loss. However, long-term suppression of bone resorption adversely affects bone tissue mechanical properties, even while conserving bone mass. Lack of remodeling leads to accumulation of fatigue-induced microdamage, altered matrix mineralization and reduction in normal bone tissue heterogeneity, causing impaired strength and fracture toughness. The most severe consequence to patients, while rare, is Atypical Femur Fractures (i.e., complete fatigue fractures of the femoral shaft). To counteract the effects of long-term remodeling suppression, a temporary break in BP treatment (a "drug holiday) …


Osteocyte Activity And Skeletal Muscle Relative Gene Expression Profiling After Short-Term Muscle Paralysis, Michelle Gelbs Jan 2021

Osteocyte Activity And Skeletal Muscle Relative Gene Expression Profiling After Short-Term Muscle Paralysis, Michelle Gelbs

Dissertations and Theses

Mechanical loading is essential for maintaining bone tissue. Reduced mechanical loading has been shown to have a negative effect on bone, and can result in the development of disuse osteoporosis. Disuse models of muscle inactivity and immobilization, like the Botox model used in this study, result in changes in the bone microarchitecture, the mechanisms behind which are not fully understood. In a previous four-week Botox disuse study, skeletally mature 20- week-old rats experienced degradation of intracortical bone, increased vascular porosity, and decreased osteocyte lacunar density in the tibiae. The focus of this study was to explicate a potential source of …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Feasibility Of Continuous Fever Monitoring Using Wearable Devices, Benjamin L. Smarr, Kirstin Aschbacher, Sarah M. Fisher, Anoushka Chowdhary, Stephan Dilchert, Karena Puldon, Adam Rao, Frederick M. Hecht, Ashley E. Mason Dec 2020

Feasibility Of Continuous Fever Monitoring Using Wearable Devices, Benjamin L. Smarr, Kirstin Aschbacher, Sarah M. Fisher, Anoushka Chowdhary, Stephan Dilchert, Karena Puldon, Adam Rao, Frederick M. Hecht, Ashley E. Mason

Publications and Research

Elevated core temperature constitutes an important biomarker for COVID-19 infection; however, no standards currently exist to monitor fever using wearable peripheral temperature sensors. Evidence that sensors could be used to develop fever monitoring capabilities would enable large-scale health-monitoring research and provide high-temporal resolution data on fever responses across heterogeneous populations. We launched the TemPredict study in March of 2020 to capture continuous physiological data, including peripheral temperature, from a commercially available wearable device during the novel coronavirus pandemic. We coupled these data with symptom reports and COVID-19 diagnosis data. Here we report findings from the first 50 subjects who reported …


An Investigation Into The Response Of The Us And Eu5 To The Covid-19 Disease (Convergence Of Two Pandemics: Covid-19 And Ncds), Omar Hassan Dec 2020

An Investigation Into The Response Of The Us And Eu5 To The Covid-19 Disease (Convergence Of Two Pandemics: Covid-19 And Ncds), Omar Hassan

Publications and Research

In late December 2019, a coronavirus disease (COVID-19) was identified in Wuhan China. COVID-19 was a result of the novel severe acute respiratory syndrome coronavirus 2 (SARA-CoV-2), which has resulted in a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. As of October 6, 2020, SARS-CoV-2 has affected more than 200 countries, resulting in more than 35 million identified cases with more than 1 million confirmed deaths.

This is a cross-sectional, non-interventional, observational study in patients infected with the novel coronavirus (SARS-CoV-2) or Covid-19, using John Hopkins University database JHU Coronavirus map. The data collected from …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt Dec 2020

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt

Publications and Research

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.


Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt Nov 2020

Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt

Publications and Research

The term perceptual closure refers to the neural processes responsible for “filling-in” missing information in the visual image under highly adverse viewing conditions such as fog or camouflage. Here we used a closure task that required the participants to identify barely recognizable fragmented line-drawings of common objects. Patients with schizophrenia have been shown to perform poorly on this task. Following priming, controls and importantly patients can complete the line-drawings at greater levels of fragmentation behaviorally, suggesting an improvement in their ability to performthe task. Closure phenomena have been shown to involve a distributed network of cortical regions, notably the lateral …


Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet Nov 2020

Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet

Publications and Research

The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, …