Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells Dec 2020

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells

Honors Program Theses and Projects

Doxorubicin is a successful anticancer drug approved for use in the 1970s and is considered to be one of the most effective cancer treatment methods today. Although Doxorubicin has positive survival statistics it has very negative side effects in many cases. Bleeding from the soles of the palms and feet, along with excruciating pain is often exhibited through the administration of this drug. Based on the preliminary findings utilizing optical tweezers we anticipate that this study will provide critical information about the drug binding mechanism. Single molecule biophysics techniques have provided useful insight into the DNA-binding mechanisms of small molecules. …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Development Of Computational Tools To Target Microrna, Luo Song Dec 2020

Development Of Computational Tools To Target Microrna, Luo Song

Dissertations & Theses (Open Access)

MicroRNAs (a.k.a, miRNAs) play an important role in disease development. However, few of their structures have been determined and structure-based computational methods remain challenging in accurately predicting their interactions with small molecules. To address this issue, my thesis is to develop integrated approaches to screening for novel inhibitors by targeting specific structure motifs in miRNAs. The project starts with implementing a tool to find potential miRNA targets with desired motifs. I combined both sequence information of miRNAs and known RNA structure data from Protein Data Bank (PDB) to predict the miRNA structure and identify the motif to target, then I …


Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye Oct 2020

Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials …


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Methods To Investigate Hyperthermia Induced By Tumor Treating Fields, Ruchi Singh Aug 2020

Methods To Investigate Hyperthermia Induced By Tumor Treating Fields, Ruchi Singh

Dissertations & Theses (Open Access)

Tumor Treating Fields (TTFields) are an antineoplastic treatment delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. TTF’s is a non-invasive application of low-intensity (1-3 V/cm), intermediate-frequency (100-500 kHz) alternating electric fields. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis through the depolymerization of microtubules and interruption of the spindle structure leading to mitotic catastrophe and the formation of non-viable daughter cells. Tumor Treating fields do not stimulate nerves and muscle because of their high frequency, and do …


Phantoms To Placentas: Mr Methods For Oxygen Quantification, Kelsey Meinerz May 2020

Phantoms To Placentas: Mr Methods For Oxygen Quantification, Kelsey Meinerz

Arts & Sciences Electronic Theses and Dissertations

Molecular oxygen (O2) is vital for efficient energy production and improper oxygenation is a hallmark of disease or metabolic dysfunction. In many pathologies, knowledge of tissue oxygen levels (pO2) could aid in diagnosis and treatment planning. The gold standard for pO2 measures in tissue are implantable probes, which are invasive, require surgery for placement, and are inaccessible to certain regions of the body. Methods for determining pO2 both non-invasively and quantitatively are lacking. The slight paramagnetic nature of O2 provides opportunities to non-invasively characterize pO2 in tissue via magnetic resonance (MR) techniques. As such, O2 can be treated as a …


Analyzing Change-Of-Direction And The Laterally Resisted Split Squat: Incorporating A Lateral Vector Into The Single Leg Squat, Derek Maddy May 2020

Analyzing Change-Of-Direction And The Laterally Resisted Split Squat: Incorporating A Lateral Vector Into The Single Leg Squat, Derek Maddy

Boise State University Theses and Dissertations

Improving change of direction (COD) with the use of strength training has led to mixed results. To date, the modified single leg squat (MSLS) and the bilateral squat (BS) have been successfully used to improve COD, with equal improvement. COD is primarily performed at a 45-75° frontal plane angle; however, the MSLS and BS are performed at a 90° frontal plane angle. Based on the force vector theory, it is proposed that a more mechanically similar strength training exercise, the Laterally Resisted Split Squat (LRSS), be used. The purpose of this study is to compare COD with the LRSS, MSLS, …


Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue May 2020

Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue

Student Scholar Symposium Abstracts and Posters

The World Health Organization found that 37.9 million people were living with HIV by the end of 2018. HIV is a virus that weakens the immune system through viral replication and the destruction of CD4+ T-cells, which are white blood cells that detect infection and make antibodies. A cure for HIV has not yet been discovered. HIV-1 contains a Gag polyprotein which regulates the stages of viral replication. Previous studies suggest that the myristoyl group of a matrix protein peptide found on the Gag polyprotein, MA, forms a complex with a calcium-binding, multifunctional regulatory protein called Calmodulin (CaM). CaM …


Functional Analysis Of A Critical Glycine (Glycine 12) In Beta-Type Connexins Of Human Skin, Rasheed Bailey May 2020

Functional Analysis Of A Critical Glycine (Glycine 12) In Beta-Type Connexins Of Human Skin, Rasheed Bailey

Biology Theses

At least five beta-type connexins are expressed in various layers of the skin (Cx26, Cx30, Cx30.3, Cx31, and Cx32) and all include a glycine residue at position 12. Glycine12 (G12) is located about halfway through the cytoplasmic amino terminus and has been the focus of several studies related to connexin diseases and gap junction channel structure. The importance of this residue is evident in the severity and diversity of diseases associated with amino acid substitutions at G12 including hereditary forms of skin disease, deafness and neuropathy. This study uses bioinformatic analysis in combination with mutational analysis and electrophysiology to better …


Impedance Analysis Of Tissues In Nspef Treatment For Cancer Therapy, Edwin Ayobami Oshin Apr 2020

Impedance Analysis Of Tissues In Nspef Treatment For Cancer Therapy, Edwin Ayobami Oshin

Biomedical Engineering Theses & Dissertations

Nanosecond pulsed electric field (nsPEF) for cancer therapy is characterized by applications of high voltage pulses with low pulsed energy to induce non-thermal effects on tissues such as tumor ablation. It nonthermally treats tissues via electroporation. Electroporation is the increase in permeabilization of a cell membrane due to the application of high pulsed electric field. The objective of this study was to investigate the effect of nsPEF on tissue by monitoring the tissue’s impedance in real-time. Potato slices (both untreated and electroporated), and tumors extracted from female BALBc mice were studied. 100ns, 1-10kV pulses were applied to the tissues using …