Open Access. Powered by Scholars. Published by Universities.®

Systems Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Systems Biology

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose Dec 2020

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a very poor patient prognosis (5-year survival of ≤ 7%). While transcriptional profiling has aided in the classification of this disease into at least two broader subtypes, this alone has so far been insufficient to inform on more nuanced patterns of oncogenic dependency. We hypothesized that a more comprehensive and granular characterization of PDAC disease diversity is required to establish relevant context for targeted therapy. To this end, we sought to establish an integrated platform to: i) more comprehensively characterize differential oncogenic signaling across our tumor models, and ii) establish …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …