Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Plant Sciences

Extreme‐Phenotype Genome‐Wide Association Study (Xp‐Gwas): A Method For Identifying Trait‐Associated Variants By Sequencing Pools Of Individuals Selected From A Diversity Panel, Jinliang Yang, Haiying Jiang, Cheng-Ting Yeh, Jianming Yu, Jeffrey A. Jeddeloh, Dan Nettleton, Patrick S. Schnable Jun 2019

Extreme‐Phenotype Genome‐Wide Association Study (Xp‐Gwas): A Method For Identifying Trait‐Associated Variants By Sequencing Pools Of Individuals Selected From A Diversity Panel, Jinliang Yang, Haiying Jiang, Cheng-Ting Yeh, Jianming Yu, Jeffrey A. Jeddeloh, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

Although approaches for performing genome‐wide association studies (GWAS) are well developed, conventional GWAS requires high‐density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP‐GWAS (extreme‐phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well‐characterized kernel row number trait, which was …


Extensive Tissue-Specific Transcriptomic Plasticity In Maize Primary Roots Upon Water Deficit, Nina Opitz, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Ronny Brandt, Hans-Peter Piepho, Dan Nettleton, Frank Hochholdinger Jun 2019

Extensive Tissue-Specific Transcriptomic Plasticity In Maize Primary Roots Upon Water Deficit, Nina Opitz, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Ronny Brandt, Hans-Peter Piepho, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the …


Mu Transposon Insertion Sites And Meiotic Recombination Events Co-Localize With Epigenetic Marks For Open Chromatin Across The Maize Genome, Sanzhen Liu, Cheng-Ting Yeh, Tieming Ji, Kai Ying, Haiyan Wu, Ho Man Tang, Yan Fu, Daniel S. Nettleton, Patrick S. Schnable Jun 2019

Mu Transposon Insertion Sites And Meiotic Recombination Events Co-Localize With Epigenetic Marks For Open Chromatin Across The Maize Genome, Sanzhen Liu, Cheng-Ting Yeh, Tieming Ji, Kai Ying, Haiyan Wu, Ho Man Tang, Yan Fu, Daniel S. Nettleton, Patrick S. Schnable

Dan Nettleton

The Mu transposon system of maize is highly active, with each of the ∼50–100 copies transposing on average once each generation. The approximately one dozen distinct Mutransposons contain highly similar ∼215 bp terminal inverted repeats (TIRs) and generate 9-bp target site duplications (TSDs) upon insertion. Using a novel genome walking strategy that uses these conserved TIRs as primer binding sites, Mu insertion sites were amplified from Mu stocks and sequenced via 454 technology. 94% of ∼965,000 reads carried Mu TIRs, demonstrating the specificity of this strategy. Among these TIRs, 21 novel Mu TIRs were discovered, revealing additional complexity of …