Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physiology

The Role Of Biomaterial Substrate In Stem Cell Fate Determination, Zhenjie Liu Jan 2021

The Role Of Biomaterial Substrate In Stem Cell Fate Determination, Zhenjie Liu

Wayne State University Dissertations

The physical cues, which included topography, stiffness, and mechanical forces, can influence the stem cell renewal, differentiation, and maturation in vivo and in vitro. The nano-topography of the ECM can stimulate the neural differentiation of the stem cells, while the micro-topography of the ECM can guide the neurite outgrowth. However, the role and functional size of the micro- and nano-topography in the stem cell fate determination is not clear yet. To study this aim, two biomaterial based aligned fiber platforms (ACMFP and ASMFP) were designed, fabrication and evaluated to cover the micro-, submicro-, and nano-fiber topography, which used to study …


Cardio-Renal Mechanisms Of Fructose-Induced Salt-Sensitive Hypertension, Peter Eric Levanovich Jan 2021

Cardio-Renal Mechanisms Of Fructose-Induced Salt-Sensitive Hypertension, Peter Eric Levanovich

Wayne State University Dissertations

Dietary consumption of fructose facilitates increased intestinal fluid absorption and renal sodium reabsorption, thereby increasing fluid retention. The net result of this is a sustained increased in extracellular fluid volume that leads to states of hypervolemia and subsequent hypertension. Simultaneously, arterial pressure is being elevated by increased autonomic drive stemming from the sympathetic nervous system and various other endovascular proteins that induce vasoconstriction. Under these conditions, the addition of high dietary sodium promotes hypertension prior to the development of significant metabolic disturbances; the subtlety of which may go unnoticed by patients for prolonged periods. While much is understood regarding the …


Clinical Significance, Functional Role And Molecular Mechanism Of 2’-O-Methyltransferase Ftsj3 In Promoting Cancer Progression, Morenci Manning-Powell Jan 2021

Clinical Significance, Functional Role And Molecular Mechanism Of 2’-O-Methyltransferase Ftsj3 In Promoting Cancer Progression, Morenci Manning-Powell

Wayne State University Dissertations

2’-O-methylation (2’-O-Me), one of the most common modifications within RNA, has multiple roles in modulating RNA structure, stability, and interactions, as well as gene transcription and translation. We previously performed integrative genomic and transcriptomic analysis of 58 RNA methyltransferases, and identified FTSJ3 (FtsJ RNA 2ʹ-O-methyltransferase 3) as significantly amplified/overexpressed in breast cancer. Knockdown of FTSJ3 inhibits breast cancer cell growth in vitro. However, the clinical significance, functional role, and molecular mechanism of FTSJ3 in human cancer remains to be elucidated. In the present study, we first analyzed the differential mRNA and protein expression of FTSJ3 between tumor and normal tissues …