Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Analysis And Identification Of Phenolic Compounds With Antiproliferative Activity From Chinese Olive (Canarium Album L.) Fruit Extract By Hplc-Dad-Spe-Tt-Nmr, Yu-Te Yeh, Chien-Kuang Chen, Yi-Chun Liao, Shoei-Sheng Lee, Shu-Chen Hsieh Dec 2023

Analysis And Identification Of Phenolic Compounds With Antiproliferative Activity From Chinese Olive (Canarium Album L.) Fruit Extract By Hplc-Dad-Spe-Tt-Nmr, Yu-Te Yeh, Chien-Kuang Chen, Yi-Chun Liao, Shoei-Sheng Lee, Shu-Chen Hsieh

Journal of Food and Drug Analysis

Chinese olives (Canarium album L.) are rich in phenolic compounds, exhibiting a broad spectrum of potential clinical applications. This study is the first report on the isolation and elucidation of bioactive compounds with high antiproliferative activity from the ethyl acetate fraction of a Chinese olive fruit methanolic extract (CO-EtOAc). We used the WST-1 assay to determine which subfractions of CO-EtOAc had significant antiproliferative activity using the murine colon cancer cell line CT26. Subsequently, the functional compounds were characterized by the hyphenated technique and high-performance liquid chromatography-diode array detector-solid phase extraction-transfer tube-nuclear magnetic resonance (HPLC-DAD-SPE-TT-NMR). Thirteen phenolic constituents were identified …


Halogen Bonding Interactions Of Haloaromatic Endocrine Disruptors And The Potential For Inhibition Of Iodothyronine Deiodinases, Craig A. Bayse Jan 2023

Halogen Bonding Interactions Of Haloaromatic Endocrine Disruptors And The Potential For Inhibition Of Iodothyronine Deiodinases, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Halogen bonding (XB) is a potential mechanism for the inhibition of the thyroid-activating/deactivating iodothyronine deiodinase family of selenoproteins through interactions with halogenated endocrine disrupting compounds (EDCs). Trends in XB interactions were examined using density functional theory for a series of polyhalogenated dibenzo-1,4-dioxins, biphenyls, and other EDCs with methylselenolate, a simple model of the Dio active site selenocysteine. The strengths of the interactions depend upon the halogen (Br>Cl), the degree of substitution, and the position of the acceptor. In terms of donor-acceptor energies, interactions at the meta position are often the strongest, suggesting a link to the topology of THs, …