Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Open Neuroscience Initiative, Austin Lim Jan 2021

Open Neuroscience Initiative, Austin Lim

College of Science and Health Full Text Publications

The Open Neuroscience Initiative is a free-to-use textbook

This project began as a means to overcoming the financial burden that face undergraduate neuroscience students when buying textbooks. By compiling and writing a completely free-to-access textbook that covers the foundations of a typical college introduction to neuroscience course, students would have one less obstacle to overcome in their educational career, allowing them to focus their valuable time and attention on learning rather than finances. To make this project a reality, I began with a humble tweet in May 2019 that managed to gain a tiny bit of traction among the neuroscience …


Amylin As A Potential Link Between Type 2 Diabetes And Alzheimer Disease, Florin Despa, Larry B. Goldstein, Geert Jan Biessels Mar 2020

Amylin As A Potential Link Between Type 2 Diabetes And Alzheimer Disease, Florin Despa, Larry B. Goldstein, Geert Jan Biessels

Pharmacology and Nutritional Sciences Faculty Publications

No abstract provided.


Network-Driven Plasma Proteomics Expose Molecular Changes In The Alzheimer's Brain, Philipp A. Jaeger, Kurt M. Lucin, Markus Britschgi, Badri Vardarajan, Ruo-Pan Huang, Elizabeth D. Kirby, Rachelle Abbey, Bradley F. Boeve, Adam L. Boxer, Lindsay A. Farrer, Nicole Finch, Neill R. Graff-Radford, Elizabeth Head, Matan Hofree, Ruochun Huang, Hudson Johns, Anna Karydas, David S. Knopman, Andrey Loboda, Eliezer Masliah, Ramya Narasimhan, Ronald C. Petersen, Alexei Podtelezhnikov, Suraj Pradhan, Rosa Rademakers, Chung-Huan Sun, Steven G. Younkin, Bruce L. Miller, Trey Ideker, Tony Wyss-Coray Apr 2016

Network-Driven Plasma Proteomics Expose Molecular Changes In The Alzheimer's Brain, Philipp A. Jaeger, Kurt M. Lucin, Markus Britschgi, Badri Vardarajan, Ruo-Pan Huang, Elizabeth D. Kirby, Rachelle Abbey, Bradley F. Boeve, Adam L. Boxer, Lindsay A. Farrer, Nicole Finch, Neill R. Graff-Radford, Elizabeth Head, Matan Hofree, Ruochun Huang, Hudson Johns, Anna Karydas, David S. Knopman, Andrey Loboda, Eliezer Masliah, Ramya Narasimhan, Ronald C. Petersen, Alexei Podtelezhnikov, Suraj Pradhan, Rosa Rademakers, Chung-Huan Sun, Steven G. Younkin, Bruce L. Miller, Trey Ideker, Tony Wyss-Coray

Pharmacology and Nutritional Sciences Faculty Publications

Background: Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes.

Results: To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using …