Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Amylin As A Potential Link Between Type 2 Diabetes And Alzheimer Disease, Florin Despa, Larry B. Goldstein, Geert Jan Biessels Mar 2020

Amylin As A Potential Link Between Type 2 Diabetes And Alzheimer Disease, Florin Despa, Larry B. Goldstein, Geert Jan Biessels

Pharmacology and Nutritional Sciences Faculty Publications

No abstract provided.


Binge Alcohol Exposure Causes Neurobehavioral Deficits And Gsk3Β Activation In The Hippocampus Of Adolescent Rats, Zhe Ji, Lin Yuan, Xiong Lu, Hanqing Ding, Jia Luo, Zun-Ji Ke Feb 2018

Binge Alcohol Exposure Causes Neurobehavioral Deficits And Gsk3Β Activation In The Hippocampus Of Adolescent Rats, Zhe Ji, Lin Yuan, Xiong Lu, Hanqing Ding, Jia Luo, Zun-Ji Ke

Pharmacology and Nutritional Sciences Faculty Publications

Heavy alcohol exposure causes profound damage to the adolescent brain, particularly the hippocampus, which underlie some behavioral deficits. However, the underlying molecular mechanisms remain inconclusive. The current study sought to determine whether binge alcohol exposure affects the hippocampus-related behaviors and key signaling proteins that may mediate alcohol neurotoxicity in adolescent rats. Alcohol exposure reduced the number of both NeuN-positive and doublecortin-positive cells in the hippocampus. Alcohol also induced neurodegeneration which was confirmed by ultrastructural analysis by electronic microscopy and was accompanied with the activation of microglia. Binge alcohol exposure impaired spatial learning and memory which was evaluated by the Morris …


Network-Driven Plasma Proteomics Expose Molecular Changes In The Alzheimer's Brain, Philipp A. Jaeger, Kurt M. Lucin, Markus Britschgi, Badri Vardarajan, Ruo-Pan Huang, Elizabeth D. Kirby, Rachelle Abbey, Bradley F. Boeve, Adam L. Boxer, Lindsay A. Farrer, Nicole Finch, Neill R. Graff-Radford, Elizabeth Head, Matan Hofree, Ruochun Huang, Hudson Johns, Anna Karydas, David S. Knopman, Andrey Loboda, Eliezer Masliah, Ramya Narasimhan, Ronald C. Petersen, Alexei Podtelezhnikov, Suraj Pradhan, Rosa Rademakers, Chung-Huan Sun, Steven G. Younkin, Bruce L. Miller, Trey Ideker, Tony Wyss-Coray Apr 2016

Network-Driven Plasma Proteomics Expose Molecular Changes In The Alzheimer's Brain, Philipp A. Jaeger, Kurt M. Lucin, Markus Britschgi, Badri Vardarajan, Ruo-Pan Huang, Elizabeth D. Kirby, Rachelle Abbey, Bradley F. Boeve, Adam L. Boxer, Lindsay A. Farrer, Nicole Finch, Neill R. Graff-Radford, Elizabeth Head, Matan Hofree, Ruochun Huang, Hudson Johns, Anna Karydas, David S. Knopman, Andrey Loboda, Eliezer Masliah, Ramya Narasimhan, Ronald C. Petersen, Alexei Podtelezhnikov, Suraj Pradhan, Rosa Rademakers, Chung-Huan Sun, Steven G. Younkin, Bruce L. Miller, Trey Ideker, Tony Wyss-Coray

Pharmacology and Nutritional Sciences Faculty Publications

Background: Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes.

Results: To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using …


Dietary Supplementation With Organoselenium Accelerates Recovery Of Bladder Expression, But Does Not Improve Locomotor Function, Following Spinal Cord Injury, Carolyn A. Meyer, Ranjana Singh, Mackenzie T. Jones, Chen-Guang Yu, Ronan F. Power, James W. Geddes Jan 2016

Dietary Supplementation With Organoselenium Accelerates Recovery Of Bladder Expression, But Does Not Improve Locomotor Function, Following Spinal Cord Injury, Carolyn A. Meyer, Ranjana Singh, Mackenzie T. Jones, Chen-Guang Yu, Ronan F. Power, James W. Geddes

Spinal Cord and Brain Injury Research Center Faculty Publications

Selenium is an essential element required for activity of several antioxidant enzymes, including glutathione peroxidase. Because of the critical role of the antioxidant system in responding to traumatic events, we hypothesized that dietary selenium supplementation would enhance neuroprotection in a rodent model of spinal cord injury. Rats were maintained on either a control or selenium-enriched diet prior to, and following, injury. Dietary selenium supplementation, provided as selenized yeast added to normal rat chow, resulted in a doubling of selenium levels in the spinal cord. Dietary selenium reduced the time required for recovery of bladder function following thoracic spinal cord injury. …