Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …


9-Aminoacridine Inhibits Ribosome Biogenesis And Synergizes With Cytotoxic Drugs To Induce Selective Killing Of P53-Deficient Cells, Leonid Anikin, Dimitri G Pestov Dec 2017

9-Aminoacridine Inhibits Ribosome Biogenesis And Synergizes With Cytotoxic Drugs To Induce Selective Killing Of P53-Deficient Cells, Leonid Anikin, Dimitri G Pestov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Common cancer treatments target rapidly dividing cells and do not discriminate between cancer and normal host cells. One approach to mitigating negative side‐effects of cancer treatment is to temporarily arrest cell cycle progression and thus protect normal cells during cytotoxic treatments, a concept called cyclotherapy. We recently proposed that transient inhibition of post‐transcriptional steps of ribosome biogenesis (RBG) can be used to selectively arrest p53‐positive host cells and not p53‐null cancer cells. In this study, we investigated whether cytoprotective RBG inhibition can be achieved through small molecule treatment.