Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted Dec 2016

Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted

Electronic Theses and Dissertations

Flavonoids are polyphenolic secondary metabolites found in plants that have bioactive properties including antiviral, antioxidant, and anticancer. Two isomeric flavone were extracted from Gnaphalium elegans and Achyrocline bogotensis, plants used by the people from the Andean region of South America as remedies for cancer. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B) have shown antineoplastic activity against colon cancer cell lines dependent upon their differentiation status. Pharmacokinetic studies reported herein were used to determine dosing for antitumor assays, as well as determine target tissue concentration. These included the …


Characterization Of The Catalytic Ck2 Subunits With Substitutions At Residues Involved In Inhibitor Binding, Paul Desormeaux Sep 2016

Characterization Of The Catalytic Ck2 Subunits With Substitutions At Residues Involved In Inhibitor Binding, Paul Desormeaux

Electronic Thesis and Dissertation Repository

CK2 is a constitutively active, ubiquitously expressed and pleiotropic serine/threonine protein kinase that is implicated in many cellular functions including tumorigenesis. CK2 has two catalytic subunits, CK2a and CK2a’, that carry out its function in the cell. Previous studies have indicated that inhibitor-refractory mutants have been effective in recovering residual CK2 activity, in the presence of inhibitors, when compared to wild type CK2. Based on these observations, inhibitor-refractory mutants were created for both CK2a and CK2a’ and tested with various concentrations with two CK2-specific inhibitors, CX-4945 and inhibitor VIII. The CK2a triple mutant (V66A/I174A/H160D) was tested in inducible U2OS Flp-In …


Hexavalent Chromium Induces Malignant Transformation Of Human Lung Bronchial Epithelial Cells Via Ros-Dependent Activation Of Mir-21-Pdcd4 Signaling, Poyil Pratheeshkumar, Young-Ok Son, Sasidharan Padmaja Divya, Lilia Turcios, Ram Vinod Roy, John Andrew Hitron, Lei Wang, Donghern Kim, Jin Dai, Padmaja Asha, Zhuo Zhang, Xianglin Shi Jun 2016

Hexavalent Chromium Induces Malignant Transformation Of Human Lung Bronchial Epithelial Cells Via Ros-Dependent Activation Of Mir-21-Pdcd4 Signaling, Poyil Pratheeshkumar, Young-Ok Son, Sasidharan Padmaja Divya, Lilia Turcios, Ram Vinod Roy, John Andrew Hitron, Lei Wang, Donghern Kim, Jin Dai, Padmaja Asha, Zhuo Zhang, Xianglin Shi

Center for Research on Environmental Disease Faculty Publications

Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of …