Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Neuroscience and Neurobiology

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …


Novel Calcium-Related Targets Of Insulin In Hippocampal Neurons, Shaniya Maimaiti, Hilaree N. Frazier, Katie L. Anderson, Adam O. Ghoweri, Lawrence D. Brewer, Nada M. Porter, Olivier Thibault Nov 2017

Novel Calcium-Related Targets Of Insulin In Hippocampal Neurons, Shaniya Maimaiti, Hilaree N. Frazier, Katie L. Anderson, Adam O. Ghoweri, Lawrence D. Brewer, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in …


Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo Sep 2017

Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in …


Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock Mar 2017

Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock

Pharmacology and Nutritional Sciences Faculty Publications

Aging is the biggest risk factor for idiopathic Alzheimer’s disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce …


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris Feb 2016

Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate …