Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Neuroscience and Neurobiology

Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu Dec 2023

Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns …


Bilateral Carotid Artery Stenosis Causes Unexpected Early Changes In Brain Extracellular Matrix And Blood-Brain Barrier Integrity In Mice, Jill M. Roberts, Michael E. Maniskas, Gregory J. Bix Apr 2018

Bilateral Carotid Artery Stenosis Causes Unexpected Early Changes In Brain Extracellular Matrix And Blood-Brain Barrier Integrity In Mice, Jill M. Roberts, Michael E. Maniskas, Gregory J. Bix

Neuroscience Faculty Publications

Bilateral carotid artery stenosis (BCAS) is one experimental model of vascular dementia thought to preferentially impact brain white matter. Indeed, few studies report hippocampal and cortical pathology prior to 30 days post-stenosis; though it is unclear whether those studies examined regions outside the white matter. Since changes in the blood-brain barrier (BBB) permeability precede more overt brain pathology in various diseases, we hypothesized that changes within the BBB and/or BBB-associated extracellular matrix (ECM) could occur earlier after BCAS in the hippocampus, cortex and striatum and be a precursor of longer term pathology. Here, C57Bl/6 mice underwent BCAS or sham surgeries …


Internal Carotid Artery Stenosis: A Novel Surgical Model For Moyamoya Syndrome, Jill M. Roberts, Michael E. Maniskas, Justin F. Fraser, Gregory J. Bix Jan 2018

Internal Carotid Artery Stenosis: A Novel Surgical Model For Moyamoya Syndrome, Jill M. Roberts, Michael E. Maniskas, Justin F. Fraser, Gregory J. Bix

Sanders-Brown Center on Aging Faculty Publications

Moyamoya is a cerebrovascular disorder characterized by progressive stenosis of the intracranial internal carotid arteries. There are two forms: Disease and Syndrome, with each characterized by the sub-population it affects. Moyamoya syndrome (MMS) is more prominent in adults in their 20’s-40’s, and is often associated with autoimmune diseases. Currently, there are no surgical models for inducing moyamoya syndrome, so our aim was to develop a new animal model to study this relatively unknown cerebrovascular disease. Here, we demonstrate a new surgical technique termed internal carotid artery stenosis (ICAS), to mimic MMS using micro-coils on the proximal ICA. We tested for …


Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall Nov 2017

Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall

Spinal Cord and Brain Injury Research Center Faculty Publications

In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, football, football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy …


Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan Oct 2017

Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Complex, multi-factorial secondary injury cascades are initiated following traumatic brain injury, which makes this a difficult disease to treat. The secondary injury cascades following the primary mechanical tissue damage, are likely where effective therapeutic interventions may be targeted. One promising therapeutic target following brain injury are mitochondria. Mitochondria are complex organelles found within the cell, which act as powerhouses within all cells by supplying ATP. These organelles are also necessary for calcium cycling, redox signaling and play a major role in the initiation of cell death pathways. When mitochondria become dysfunctional, there is a tendency for the cell to loose …


Acute Treatment With Doxorubicin Affects Glutamate Neurotransmission In The Mouse Frontal Cortex And Hippocampus, Theresa Currier Thomas, Joshua A. Beitchman, Francois Pomerleau, Teresa Noel, Paiboon Jungsuwadee, D. Allan Butterfield, Daret K. St. Clair, Mary Vore, Greg A. Gerhardt Oct 2017

Acute Treatment With Doxorubicin Affects Glutamate Neurotransmission In The Mouse Frontal Cortex And Hippocampus, Theresa Currier Thomas, Joshua A. Beitchman, Francois Pomerleau, Teresa Noel, Paiboon Jungsuwadee, D. Allan Butterfield, Daret K. St. Clair, Mary Vore, Greg A. Gerhardt

Spinal Cord and Brain Injury Research Center Faculty Publications

Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary excitatory neurotransmitter. Mice treated with DOX (25 mg/kg i.p.) were subjected to in vivo recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, amperometric recordings measured parameters of extracellular glutamate clearance and potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) …


Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho Apr 2017

Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho

Spinal Cord and Brain Injury Research Center Faculty Publications

Objectives

Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+]i.

Methods

We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload‐Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T‐type voltage‐gated Ca2+ channels.

Results

In CA3 pyramidal neurons, kainic …


GabaB Receptor Attenuation Of GabaA Currents In Neurons Of The Mammalian Central Nervous System, Wen Shen, Changlong Nan, Peter T. Nelson, Harris Ripps, Malcolm M. Slaughter Mar 2017

GabaB Receptor Attenuation Of GabaA Currents In Neurons Of The Mammalian Central Nervous System, Wen Shen, Changlong Nan, Peter T. Nelson, Harris Ripps, Malcolm M. Slaughter

Pathology and Laboratory Medicine Faculty Publications

Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation …


Short Duration Waveforms Recorded Extracellularly From Freely Moving Rats Are Representative Of Axonal Activity, Ashlee A. Robbins, Steven E. Fox, Gregory L. Holmes, Rod C. Scott, Jeremy M. Barry Nov 2013

Short Duration Waveforms Recorded Extracellularly From Freely Moving Rats Are Representative Of Axonal Activity, Ashlee A. Robbins, Steven E. Fox, Gregory L. Holmes, Rod C. Scott, Jeremy M. Barry

Dartmouth Scholarship

While extracellular somatic action potentials from freely moving rats have been well characterized, axonal activity has not. We report direct extracellular tetrode recordings of putative axons whose principal feature is a short duration waveform (SDW) with an average peak-trough length less than 179 μs. While SDW recordings using tetrodes have previously been treated as questionable or classified as cells, we hypothesize that they are representative of axonal activity. These waveforms have significantly shorter duration than somatic action potentials, are triphasic and are therefore similar to classic descriptions of microelectrode recordings in white matter and of in vitro action potential propagation …