Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

The Characterization Of The Fibroblast Growth Factor Receptor Substrate 3 And Its Role In Regulating Microtubule Dynamics And Molecular Transport In The Brain, Sarah J. Gamble Aug 2012

The Characterization Of The Fibroblast Growth Factor Receptor Substrate 3 And Its Role In Regulating Microtubule Dynamics And Molecular Transport In The Brain, Sarah J. Gamble

Electronic Thesis and Dissertation Repository

The neuronal cytoskeleton is responsible for governing dynamics such as neurite extension and cortex development. In particular, microtubules (MTs) and their associated proteins, and molecular motors, have been shown to be critical in many neuronal processes such as intracellular molecular transport and neuron differentiation. The fibroblast growth factors (FGFs) act as powerful morphogens that have been shown to play a role in regulating cortical development. FGFs activate receptor tyrosine kinases, of which fibroblast growth factor receptor substrate 3(FRS3) has been shown to interact with, to mediate downstream signaling cascades (regulating cell proliferation and differentiation). In addition to FRS3’s role in …


The Role Of An Rna Binding Protein Hnrnp K During Axon Development And Regeneration In Xenopus Laevis, Yuanyuan Liu Jan 2012

The Role Of An Rna Binding Protein Hnrnp K During Axon Development And Regeneration In Xenopus Laevis, Yuanyuan Liu

Legacy Theses & Dissertations (2009 - 2024)

Coordinated synthesis and assembly of the cytoskeletal network contribute significantly to morphological changes during axon outgrowth. Previous studies demonstrated that heterogeneous ribonucleoprotein K (hnRNP K), an RNA binding protein, binds to the 3'-untranslated regions of all neurofilament triplet subunits, the most abundant components of the axonal cytoskeleton. These findings raised the hypothesis that hnRNP K post-transcriptionally mediates the coordinated expression of axonal cytoskeletal components. In my thesis, I test this hypothesis during both axonal development and regeneration.