Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Neuroscience and Neurobiology

Associative Spike Timing-Dependent Potentiation Of The Basal Dendritic Excitatory Synapses In The Hippocampus In Vivo., Thomas K Fung, Clayton S Law, L Stan Leung Jun 2016

Associative Spike Timing-Dependent Potentiation Of The Basal Dendritic Excitatory Synapses In The Hippocampus In Vivo., Thomas K Fung, Clayton S Law, L Stan Leung

Physiology and Pharmacology Publications

Spike timing-dependent plasticity in the hippocampus has rarely been studied in vivo. Using extracellular potential and current source density analysis in urethane-anesthetized adult rats, we studied synaptic plasticity at the basal dendritic excitatory synapse in CA1 after excitation-spike (ES) pairing; E was a weak basal dendritic excitation evoked by stratum oriens stimulation, and S was a population spike evoked by stratum radiatum apical dendritic excitation. We hypothesize that positive ES pairing-generating synaptic excitation before a spike-results in long-term potentiation (LTP) while negative ES pairing results in long-term depression (LTD). Pairing (50 pairs at 5 Hz) at ES intervals of -10 …


Diffuse Traumatic Brain Injury Induces Prolonged Immune Sysregulation And Potentiates Hyperalgesia Following A Peripheral Immune Challenge, Rachel K. Rowe, Gavin I. Ellis, Jordan L. Harrison, Adam D. Bachstetter, Gregory F. Corder, Linda J. Van Eldik, Bradley K. Taylor, Francesc Marti, Jonathan Lifshitz May 2016

Diffuse Traumatic Brain Injury Induces Prolonged Immune Sysregulation And Potentiates Hyperalgesia Following A Peripheral Immune Challenge, Rachel K. Rowe, Gavin I. Ellis, Jordan L. Harrison, Adam D. Bachstetter, Gregory F. Corder, Linda J. Van Eldik, Bradley K. Taylor, Francesc Marti, Jonathan Lifshitz

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Background: Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation.

Results: To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an …


Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris Feb 2016

Blockade Of Astrocytic Calcineurin/Nfat Signaling Helps To Normalize Hippocampal Synaptic Function And Plasticity In A Rat Model Of Traumatic Brain Injury, Jennifer L. Furman, Pradoldej Sompol, Susan D. Kraner, Melanie M. Pleiss, Esther J. Putman, Jacob Dunkerson, Hafiz Mohmmad Abdul, Kelly N. Roberts, Stephen William Scheff, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate …


Local Corticotropin Releasing Hormone (Crh) Signals To Its Receptor Crhr1 During Postnatal Development Of The Mouse Olfactory Bulb., Isabella Garcia, Paramjit K Bhullar, Burak Tepe, Joshua Ortiz-Guzman, Longwen Huang, Alexander M Herman, Lesley Chaboub, Benjamin Deneen, Nicholas J Justice, Benjamin R Arenkiel Jan 2016

Local Corticotropin Releasing Hormone (Crh) Signals To Its Receptor Crhr1 During Postnatal Development Of The Mouse Olfactory Bulb., Isabella Garcia, Paramjit K Bhullar, Burak Tepe, Joshua Ortiz-Guzman, Longwen Huang, Alexander M Herman, Lesley Chaboub, Benjamin Deneen, Nicholas J Justice, Benjamin R Arenkiel

Faculty Publications

Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related …