Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Diseases

Sanders-Brown Center on Aging Faculty Publications

Alzheimer's disease

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Neuroscience and Neurobiology

Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris Jun 2017

Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with …


Neuroimaging Biomarkers Of Caloric Restriction On Brain Metabolic And Vascular Functions, Ai-Ling Lin, Ishita Parikh, Jared D. Hoffman, David Ma Mar 2017

Neuroimaging Biomarkers Of Caloric Restriction On Brain Metabolic And Vascular Functions, Ai-Ling Lin, Ishita Parikh, Jared D. Hoffman, David Ma

Sanders-Brown Center on Aging Faculty Publications

Purpose of Review

Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here, we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR) and their potential usefulness for future studies with dietary interventions in humans.

Recent Findings

CR causes an early shift in brain metabolism of glucose to ketone bodies and enhances ATP production, neuronal activity, and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also …


Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar Dec 2016

Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar

Sanders-Brown Center on Aging Faculty Publications

Background: Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer’s disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1.

Method: We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice.

Results: First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 …


AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer Feb 2016

AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer

Sanders-Brown Center on Aging Faculty Publications

Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood–brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood–brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We …


Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik Jul 2012

Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that …