Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

The Effect Of Calcium Ions On Mechanosensation And Neuronal Activity In Proprioceptive Neurons, Devan E. Atkins, Kimberly L. Bosh, Grace W. Breakfield, Sydney E. Daniels, Makayla J. Devore, Hailey E. Fite, Landys Z. Guo, Danielle K. J. Henry, Alana K. Kaffenberger, Katherine S. Manning, Tatum E. Mowery, Cecilia L. Pankau, Nyla Parker, Malina E. Serrano, Yamaan Shakhashiro, Hannah N. Tanner, Ruth. A. Ward, Aubrey H. Wehry, Robin L. Cooper Oct 2021

The Effect Of Calcium Ions On Mechanosensation And Neuronal Activity In Proprioceptive Neurons, Devan E. Atkins, Kimberly L. Bosh, Grace W. Breakfield, Sydney E. Daniels, Makayla J. Devore, Hailey E. Fite, Landys Z. Guo, Danielle K. J. Henry, Alana K. Kaffenberger, Katherine S. Manning, Tatum E. Mowery, Cecilia L. Pankau, Nyla Parker, Malina E. Serrano, Yamaan Shakhashiro, Hannah N. Tanner, Ruth. A. Ward, Aubrey H. Wehry, Robin L. Cooper

Biology Faculty Publications

Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on …


Describing A Putative Corollary Discharge Circuit In Drosophila, Kaitlyn Nicole Boone Jan 2021

Describing A Putative Corollary Discharge Circuit In Drosophila, Kaitlyn Nicole Boone

Graduate Theses, Dissertations, and Problem Reports

Corollary discharge (CD) circuits provide critical information about movement and behavior to provide context to sensory processing. However, to date, there has not been a comprehensive study of CD circuits at a single-cell level. In this thesis, I aimed to resolve the connectivity of ascending histaminergic neurons, consisting of two pairs, the mesothoracic pair (MsAHNs) and metathoracic pair (MtAHNs) at a single-cell level and characterize contexts of activation. Using transgenic techniques, connectomics and transcriptomics, we identify neural populations receiving input from the AHNs and neural populations with significant output to the AHNs. We explored where the AHNs predominantly receive synaptic …