Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Characterization Of Cu-Rich Aggregates In Neurogenic Niches Of The Rodent Brain By X-Ray Fluorescence Microscopy, Brendan T. Sullivan Apr 2016

Characterization Of Cu-Rich Aggregates In Neurogenic Niches Of The Rodent Brain By X-Ray Fluorescence Microscopy, Brendan T. Sullivan

Open Access Dissertations

Copper is an essential element in the brain playing several critical roles ranging from neurotransmitter synthesis to ATP production. As Cu is typically present in micromolar concentrations and has a spatially capricious distribution in the brain, determining concentrations has historically been challenging. X-ray fluorescence microscopy (XRF) offers excellent spatial resolution (down to 30~nm) and detection limits (sub parts per million), making it an excellent tool for analyzing metal distributions in the brain. Using XRF, it is demonstrated that Cu-rich aggregates with concentrations in the hundreds of millimolar are present in the subventricular zone of rats and mice. As the subventricular …