Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Microbiology

Telomeric And Sub-Telomeric Structure And Implications In Fungal Opportunistic Pathogens, Raffaella Diotti, Michelle Esposito, Chang Hui Shen Jun 2021

Telomeric And Sub-Telomeric Structure And Implications In Fungal Opportunistic Pathogens, Raffaella Diotti, Michelle Esposito, Chang Hui Shen

Publications and Research

Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity …


Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling Apr 2020

Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling

School of Biological Sciences: Dissertations, Theses, and Student Research

Betaine lipids are a class of membrane lipids with betaine head groups. Three betaine lipids are known - diacylglyceryltrimethylhomoserine (DGTS), diacylglycerylhydroxymethylalanine (DGTA), and diacylglycerylcarboxymethylcholine (DGCC). Betaine lipids are most common in algae, although DGTS, the most common betaine lipid, is also found in many bacteria and fungi. Organisms which produce betaine lipids (especially DGTS) often don’t produce phosphatidylcholine (PtdCho), and DGTS structure resembles PtdCho structure without any phosphorous, leading to the hypothesis that betaine lipids may substitute for phospholipids in some organisms. This has been confirmed by discoveries that some organisms are capable of switching their membrane composition from PtdCho …


Analyzing The Role Of A Protein Downregulated After Induction Of Filamentous Growth In Candida Albicans, Jazmine Vasquez, Ian Cleary, Derek P. Thomas Oct 2019

Analyzing The Role Of A Protein Downregulated After Induction Of Filamentous Growth In Candida Albicans, Jazmine Vasquez, Ian Cleary, Derek P. Thomas

McNair Scholars Manuscripts

Candida albicans is a commensal fungus, normally living with its human host, however, it has the ability to cause invasive infection. Candida albicans is the fourth most frequent nosocomial infection affecting a vulnerable immunocompromised population. Candida albicans exhibits different morphologies including yeast, pseudohyphae, and hyphae. The varying morphological potential of this organism is a virulence trait. Because of this, research has focused on what drives activation of hyphal formation as well as what impedes it. During a filamentation assay, a novel observation pertaining to a subgroup of proteins being downregulated early after germination, was made. In this study, we constructed …


Histone Acetylation Increases In Response To Ferulic, Gallic, And Sinapic Acids Acting Synergistically In Vitro To Inhibit Candida Albicans Yeast‐To‐Hyphae Transition, Cristiane R. S. Câmara, Qin-Yin Shi, Matthew Pedersen, Richard Zbasnik, Kenneth Nickerson, Vicki Schlegel Jan 2019

Histone Acetylation Increases In Response To Ferulic, Gallic, And Sinapic Acids Acting Synergistically In Vitro To Inhibit Candida Albicans Yeast‐To‐Hyphae Transition, Cristiane R. S. Câmara, Qin-Yin Shi, Matthew Pedersen, Richard Zbasnik, Kenneth Nickerson, Vicki Schlegel

Department of Food Science and Technology: Faculty Publications

Novel treatments are needed to prevent candidiasis/candidemia infection due to the emergence of Candida species resistant to current antifungals. Considering the yeast-to‐hyphae switch is a critical factor to Candida albicans virulence, phenols common in plant sources have been reported to demonstrating their ability to prevent dimorphism. Therefore, phenols present in many agricultural waste stress (ferulic (FA) and gallic (GA) acid) were initially screened in isolation for their yeast‐to‐hyphae inhibitory properties at times 3, 6, and 24 hr. Both FA and GA inhibited 50% of hyphae formation inhibitory concentration (IC50) but at a concentration of 8.0 ± 0.09 and …


The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin Nov 2016

The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin

School of Biological Sciences: Dissertations, Theses, and Student Research

Due to the increased number of immunocompromised patients, infections by Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is an essential factor for virulence. In this study we noted that Lee's medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee's medium and a defined glucose proline medium, and ca. 4-fold in …


Flavodoxin-Like Proteins Protect Candida Albicans From Oxidative Stress And Promote Virulence, Lifang Li, Shamoon Naseem, Sahil Sharma, James B. Konopka Sep 2015

Flavodoxin-Like Proteins Protect Candida Albicans From Oxidative Stress And Promote Virulence, Lifang Li, Shamoon Naseem, Sahil Sharma, James B. Konopka

Department of Molecular Genetics and Microbiology Faculty Publications

The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C.albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance …


N-Acetylglucosamine Regulates Virulence Properties In Microbial Pathogens, Shamoon Naseem, James B. Konopka Jul 2015

N-Acetylglucosamine Regulates Virulence Properties In Microbial Pathogens, Shamoon Naseem, James B. Konopka

Department of Molecular Genetics and Microbiology Faculty Publications

There is growing evidence that the sugar N-acetylglucosamine (GlcNAc) plays diverse roles in cell signaling pathways that impact the virulence properties of microbes and host cells. GlcNAc is already well known as a ubiquitous structural component at the cell surface that forms part of bacterial cell wall peptidoglycan, cell wall chitin in fungi and parasites, and extracellular matrix glycosaminoglycans of animal cells. Chitin and peptidoglycan have been previously linked to cell signaling as they can stimulate responses in plant and animal host cells [13]. Recent studies now indicate that GlcNAc released from these polymers can also …


Candida Albicans Ethanol Stimulates Pseudomonas Aeruginosa Wspr-Controlled Biofilm Formation As Part Of A Cyclic Relationship Involving Phenazines, Annie I. Chen, Emily F. Dolben, Chinweike Okegbe, Colleen E. Harty, Yuriy Golub, Sandy Thao, Dae Gon Ha, Sven D. Willger, George A. O'Toole, Caroline S. Harwood, Lars E. P Dietrich, Deborah A. Hogan Oct 2014

Candida Albicans Ethanol Stimulates Pseudomonas Aeruginosa Wspr-Controlled Biofilm Formation As Part Of A Cyclic Relationship Involving Phenazines, Annie I. Chen, Emily F. Dolben, Chinweike Okegbe, Colleen E. Harty, Yuriy Golub, Sandy Thao, Dae Gon Ha, Sven D. Willger, George A. O'Toole, Caroline S. Harwood, Lars E. P Dietrich, Deborah A. Hogan

Dartmouth Scholarship

In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic- di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol …


Evolutionary And Molecular Analysis Of Conserved Vertebrate Immunity To Fungi, Erin Carter May 2013

Evolutionary And Molecular Analysis Of Conserved Vertebrate Immunity To Fungi, Erin Carter

Honors College

The innate immune system is highly conserved amongst all multicellular organisms. Yet a constant battle exists between host cells and pathogens due to the rapid evolution of immune system components. Functional genomics and in silico methods can be employed to elucidate the evolutionary patterns of vertebrate immunity to pathogenic fungi such as Candida albicans, an opportunistic fungal pathogen that can cause lethal candidiasis in the immunocompromised. Mammals such as humans and mice possess conserved C-type lectin receptors that recognize the C. albicans cell wall. However, these receptors have not been identified in fish. Here I describe how we identified potential …


Control Of Candida Albicans Metabolism And Biofilm Formation By Pseudomonas Aeruginosa Phenazines, Diana K. Morales, Nora Grahl, Chinweike Okegbe, Lars E. P. Dietrich, Nicholas J. Jacobs, Deborah A. Hogan Jan 2013

Control Of Candida Albicans Metabolism And Biofilm Formation By Pseudomonas Aeruginosa Phenazines, Diana K. Morales, Nora Grahl, Chinweike Okegbe, Lars E. P. Dietrich, Nicholas J. Jacobs, Deborah A. Hogan

Dartmouth Scholarship

Candidaalbicanshasdevelopmentalprogramsthatgoverntransitionsbetweenyeastandfilamentousmorphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm develop- ment were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fer- mentation products (ethanol, glycerol, and …


Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer Jan 2013

Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer

Dartmouth Scholarship

The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages. Using single-cell reporters, we showed here that arginine biosynthetic genes are induced specifically in phagocytosed cells. This induction is …


Unmasking Candidiasis: A Mechanistic Model For Innate Immune-Fungal Cell Wall Dynamics, Erica Hidu Dec 2012

Unmasking Candidiasis: A Mechanistic Model For Innate Immune-Fungal Cell Wall Dynamics, Erica Hidu

Honors College

Candida albicans is an opportunistic fungal pathogen that can cause a potentially lethal systemic infection in immunocompromised patients. Increasing drug resistance of Candida species to anti-fungal treatments makes the study of this pathogen ever more important. Study of the C. albicans cell wall provides insight into its importance in pathogenesis, immune recognition, and anti-fungal action. It has been shown that β- glucan, a masked component of the fungal cell wall and ligand for the immune receptor Dectin-1, becomes available for immune recognition in the mouse model of systemic candidiasis. To develop a mechanistic model to explain this unmasking, we investigated …


Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan Aug 2012

Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan

Dartmouth Scholarship

Candida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced by C. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants …


The Tlo Proteins Are Stoichiometric Components Of Candida Albicans Mediator Anchored Via The Med3 Subunit, Anda Zhang, Kostadin O. Petrov, Emily R. Hyun, Zhongle Liu, Scott A. Gerber, Lawrence C. Myers May 2012

The Tlo Proteins Are Stoichiometric Components Of Candida Albicans Mediator Anchored Via The Med3 Subunit, Anda Zhang, Kostadin O. Petrov, Emily R. Hyun, Zhongle Liu, Scott A. Gerber, Lawrence C. Myers

Dartmouth Scholarship

The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo …


Physiological Studies On Candida Albicans, Swetha Tati Jul 2010

Physiological Studies On Candida Albicans, Swetha Tati

School of Biological Sciences: Dissertations, Theses, and Student Research

Candida albicans is a common opportunistic, dimorphic human fungal pathogen. One of its virulence factors is the morphological switch between yeasts and hyphal or pseudohyphal forms, which can invade tissues and cause damage. Our studies focus on factors regulating pseudohyphae and epigenetic modifications of C. albicans. Regulating factors of pseudohyphae are aromatic alcohols and high phosphate. At low concentrations, exogenous aromatic alcohols induced pseudohyphae, as did high phosphate. For addressing the pathways involved in inducing pseudohyphae by aromatic alcohols or high phosphate, we used mutants defective in cAMP dependent PKA pathway (efg1/efg1), MAP kinase pathway (cph1/cph1), or both (cph1/cph1/efg1/efg1). …


Farnesol Signaling In Candida Albicans, Melanie L. Langford Apr 2010

Farnesol Signaling In Candida Albicans, Melanie L. Langford

School of Biological Sciences: Dissertations, Theses, and Student Research

Candida albicans is a polymorphic fungus that causes a range of disease in humans, from mucosal infections to systemic disease. Its ability to cause disease is linked to conversion between yeast and filamentous forms of growth, and the first quorum-sensing molecule discovered in an eukaryote, farnesol, blocks this transition. In C. albicans, farnesol also kills mating-competent opaque cells, inhibits biofilm formation, protects the cells from oxidative stress, and can be a virulence factor or protective agent in disseminated and mucosal mouse models of infection, respectively. While much emphasis has been placed on determining its effect on C. albicans morphology, …


Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan Jan 2010

Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan

Dartmouth Scholarship

Farnesol, a Candida albicans cell-cell signaling molecule that participates in the control of morphology, has an additional role in protection of the fungus against oxidative stress. In this report, we show that although farnesol induces the accumulation of intracellular reactive oxygen species (ROS), ROS generation is not necessary for the induction of catalase (Cat1)-mediated oxidative-stress resistance. Two antioxidants, α-tocopherol and, to a lesser extent, ascorbic acid effectively reduced intracellular ROS generation by farnesol but did not alter farnesol-induced oxidative-stress resistance. Farnesol inhibits the Ras1-adenylate cyclase (Cyr1) signaling pathway to achieve its effects on morphology under hypha-inducing conditions, and we demonstrate …


Candida Albicans Cellwall Components And Farnesol Stimulate The Expression Of Both Inflammatory And Regulatory Cytokines In The Murine Raw264.7 Macrophage Cell Line, Suman Ghosh, Nina Howe, Katie Volk, Swetha Tati, Kenneth W. Nickerson, Thomas M. Petro Jan 2010

Candida Albicans Cellwall Components And Farnesol Stimulate The Expression Of Both Inflammatory And Regulatory Cytokines In The Murine Raw264.7 Macrophage Cell Line, Suman Ghosh, Nina Howe, Katie Volk, Swetha Tati, Kenneth W. Nickerson, Thomas M. Petro

Kenneth Nickerson Papers

Candida albicans causes candidiasis, secretes farnesol, and switches from yeast to hyphae to escape from macrophages after phagocytosis. However, before escape, macrophages may respond to C. albicans’ pathogen-associated molecular patterns (PAMPs) through toll-like receptor 2 (TLR2) and dectin-1 receptors by expressing cytokines involved in adaptive immunity, inflammation, and immune regulation. Therefore, macrophages and the RAW264.7 macrophage line were challenged with C. albicans preparations of live wild-type cells, heat-killed cells, a live mutant defective in hyphae formation, a live mutant producing less farnesol, or an isolate producing farnesoic acid instead of farnesol. Interleukin-6 (IL-6), and IL-1b, IL- 10, and tumor …


Pseudomonas Aeruginosa-Candida Albicans Interactions: Localization And Fungal Toxicity Of A Phenazine Derivative, Jane Gibson, Arpanah Sood, Deborah A. Hogan Nov 2008

Pseudomonas Aeruginosa-Candida Albicans Interactions: Localization And Fungal Toxicity Of A Phenazine Derivative, Jane Gibson, Arpanah Sood, Deborah A. Hogan

Dartmouth Scholarship

Phenazines are redox-active small molecules that play significant roles in the interactions between pseudomonads and diverse eukaryotes, including fungi. When Pseudomonas aeruginosa and Candida albicans were cocultured on solid medium, a red pigmentation developed that was dependent on P. aeruginosa phenazine biosynthetic genes. Through a genetic screen in combination with biochemical experiments, it was found that a P. aeruginosa-produced precursor to pyocyanin, proposed to be 5-methyl-phenazinium-1-carboxylate (5MPCA), was necessary for the formation of the red pigmentation. The 5MPCA-derived pigment was found to accumulate exclusively within fungal cells, where it retained the ability to be reversibly oxidized and reduced, and its …


Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom Dec 2007

Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom

Dartmouth Scholarship

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. …


Farnesol Restores Wild-Type Colony Morphology To 96% Of Candida Albicans Colony Morphology Variants Recovered Following Treatment With Mutagens, Ellen C. Jensen, Jacob M. Hornby, Nicole E. Pagliaccetti, Chuleeon M. Wolter, Kenneth Nickerson, Audrey L. Atkin Apr 2006

Farnesol Restores Wild-Type Colony Morphology To 96% Of Candida Albicans Colony Morphology Variants Recovered Following Treatment With Mutagens, Ellen C. Jensen, Jacob M. Hornby, Nicole E. Pagliaccetti, Chuleeon M. Wolter, Kenneth Nickerson, Audrey L. Atkin

Kenneth Nickerson Papers

Candida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition. Mutants that fail to synthesize or respond to farnesol could be locked in the filamentous mode. To test this hypothesis, a collection of C. albicans mutants were isolated that have altered colony morphologies indicative of the presence of hyphal cells under environmental conditions where C. albicans normally grows only as yeasts. All …


Talking To Themselves: Autoregulation And Quorum Sensing In Fungi, Deborah A. Hogan Apr 2006

Talking To Themselves: Autoregulation And Quorum Sensing In Fungi, Deborah A. Hogan

Dartmouth Scholarship

Extracellular autoinducing compounds in the supernatants of microbial cultures were first recognized for their roles in the induction of genetic competence in gram-positive bacteria and in the regulation of light production in marine vibrios. In 1994, this form of population-level regulation in microbes was dubbed “quorum sensing” since it enabled bacterial cells to chemically measure the density of the surrounding population. Subsequently, many examples of cell density-dependent regulation by extracellular factors have been found in diverse microorganisms. The widespread incidence of diverse quorum-sensing systems strongly suggests that regulation in accordance with cell density is important for the success of microbes …


High Phosphate (Up To 600 Mm) Induces Pseudohyphal Development In Five Wild Type Candida Albicans, Jacob M. Hornby, Raluca Dumitru, Kenneth Nickerson Jan 2004

High Phosphate (Up To 600 Mm) Induces Pseudohyphal Development In Five Wild Type Candida Albicans, Jacob M. Hornby, Raluca Dumitru, Kenneth Nickerson

Kenneth Nickerson Papers

A method is described for the formation of nearly 100% pseudohyphae populations of wild-type Candida albicans A72. The method employs fungal growth at 37 °C (ca. 5×106 cells/ml) in a glucose–proline–N-acetyl-glucosamine medium supplemented with up to 600 mM phosphate (KH2PO4/K2HPO4 1:1) at pH 6.5. Four other strains of C. albicans (MEN, 10261, SG5314 and CAI-4) also formed pseudohyphae under these conditions, although the phosphate response profiles differed in the concentration required for each strain to form pseudohyphae.