Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Microbiology

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs Jan 2021

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed …


Inhibition Of Human Metapneumovirus Binding To Heparan Sulfate Blocks Infection In Human Lung Cells And Airway Tissues, Edita M. Klimyte, Stacy E. Smith, Pasqua Oreste, David Lembo, Rebecca Ellis Dutch Oct 2016

Inhibition Of Human Metapneumovirus Binding To Heparan Sulfate Blocks Infection In Human Lung Cells And Airway Tissues, Edita M. Klimyte, Stacy E. Smith, Pasqua Oreste, David Lembo, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary …


Late Events Of Human Metapneumovirus Infection: Insights Into Viral Spread Within The Respiratory Epithelium, Farah El Najjar Jan 2016

Late Events Of Human Metapneumovirus Infection: Insights Into Viral Spread Within The Respiratory Epithelium, Farah El Najjar

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a leading cause of respiratory tract infections worldwide across all age groups, and is particularly devastating in the pediatric, elderly and immunocompromised populations. Despite its high prevalence and burden on human health, there are currently no treatments or vaccines against HMPV infections. HMPV is an enveloped virus that belongs to the paramyxovirus family. Paramyxoviruses in general form by assembly of virus components at the plasma membrane followed by budding and release of virus particles into the extracellular matrix to spread infection. The process of forming new virus particles requires complex interactions between viral and cellular components …