Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Virology

University of Kentucky

Horses

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Microbiology

Development And Evaluation Of A One-Step Multiplex Real-Time Taqman® Rt-Qpcr Assay For The Detection And Genotyping Of Equine G3 And G14 Rotaviruses In Fecal Samples, Mariano Carossino, Maria E. Barrandeguy, Erdal Erol, Yanqiu Li, Udeni B. R. Balasuriya Apr 2019

Development And Evaluation Of A One-Step Multiplex Real-Time Taqman® Rt-Qpcr Assay For The Detection And Genotyping Of Equine G3 And G14 Rotaviruses In Fecal Samples, Mariano Carossino, Maria E. Barrandeguy, Erdal Erol, Yanqiu Li, Udeni B. R. Balasuriya

Veterinary Science Faculty Publications

Background: Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and has a negative impact on equine breeding enterprises worldwide. Among ERVA strains infecting foals, the genotypes G3P[12] and G14P[12] are the most prevalent, while infections by strains with other genomic arrangements are infrequent. The identification of circulating strains of ERVA is critical for diagnostic and surveillance purposes, as well as to understand their molecular epidemiology. Current genotyping methods available for ERVA and rotaviruses affecting other animal species rely on Sanger sequencing and are significantly time-consuming, costly and labor intensive. Here, we developed the first one-step …


Equine Arteritis Virus Uses Equine Cxcl16 As An Entry Receptor, Sanjay Sarkar, Lakshman Chelvarajan, Yun Young Go, Frank Cook, Sergey Artiushin, Shankar Mondal, Kelsi Anderson, John E. Eberth, Peter J. Timoney, Theodore S. Kalbfleisch, Ernest F. Bailey, Udeni B. R. Balasuriya Apr 2016

Equine Arteritis Virus Uses Equine Cxcl16 As An Entry Receptor, Sanjay Sarkar, Lakshman Chelvarajan, Yun Young Go, Frank Cook, Sergey Artiushin, Shankar Mondal, Kelsi Anderson, John E. Eberth, Peter J. Timoney, Theodore S. Kalbfleisch, Ernest F. Bailey, Udeni B. R. Balasuriya

Veterinary Science Faculty Publications

Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from < 3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated …