Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Microbiology

Crispr Technology As An Antiviral In Dsdna And Ssrna Viruses, Cathryn Mayes Dec 2022

Crispr Technology As An Antiviral In Dsdna And Ssrna Viruses, Cathryn Mayes

Theses & Dissertations

The COVID-19 pandemic highlights the necessity of emergency response and pandemic preparedness, especially for emerging viral threats. Currently, virus-specific vaccines and antivirals are the primary tools to combat viral diseases; however, broad-spectrum antivirals that target more than one virus species could provide additional protection from emerging and re-emerging viral diseases (Andersen et al. 2020; Zhu et al. 2015; Hickman et al. 2022).

Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated endonucleases have become recently utilized as potential antiviral strategies due to their high specificity, efficacy, and versatility (Najafi et al. 2022). While CRISPR-based antivirals have previously been used to target specific …


Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman Aug 2022

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman

Graduate Theses and Dissertations

Antibiotic resistance is increasing prevalence, particularly in Candida glabrata. This opportunistic pathogen is closely phylogenetically related to Saccharomyces cerevisiae; however, its characterization is limited. C. glabrata is only second to Candida albicans as a fungal pathogen in immunocompromised patients. Commonly resistant to azoles, the most common fungal therapy, it has become costly and challenging to treat. A histatin 5 derived antifungal peptide, KM29, has a high degree of efficacy in Candida species and S. cerevisiae. The objective of this work is to advance our understanding of the mechanism of action of KM29 against C. glabrata. Previous work in the lab …


Multistrain Hiv-1 Elimination: A Crispr-Cas9 And Theranostics-Based Approach, Jonathan Herskovitz Dec 2020

Multistrain Hiv-1 Elimination: A Crispr-Cas9 And Theranostics-Based Approach, Jonathan Herskovitz

Theses & Dissertations

A critical barrier to achieving a functional cure for infection by human immunodeficiency virus type one (HIV-1) rests in the presence of latent proviral DNA integrated in the nuclei of host CD4+ T cells and mononuclear phagocytes. Accordingly, HIV-1-infected patients must adhere to lifelong regimens of antiretroviral therapy (ART) to prevent viral rebound, CD4+ T cell decline, and progression to acquired immunodeficiency syndrome (AIDS). Gene editing using clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 technology stands as one means to inactivate integrated proviral DNA. We devised a mosaic gRNA CRISPR-Cas9 system- TatDE- that targets viral transcriptional regulator genes tat / …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …