Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Microbiology

Biogeographic Study Of Human Gut-Associated Crassphage Suggests Impacts From Industrialization And Recent Expansion, Tanvi P/ Honap, Krithivasan Sankaranarayanan, Stephanie L. Schnorr, Andrew T. Ozga, Christina Warinner, Cecil M. Lewis Jr. Jan 2020

Biogeographic Study Of Human Gut-Associated Crassphage Suggests Impacts From Industrialization And Recent Expansion, Tanvi P/ Honap, Krithivasan Sankaranarayanan, Stephanie L. Schnorr, Andrew T. Ozga, Christina Warinner, Cecil M. Lewis Jr.

Anthropology Faculty Research

CrAssphage (cross-assembly phage) is a bacteriophage that was first discovered in human gut metagenomic data. CrAssphage belongs to a diverse family of crAss-like bacteriophages thought to infect gut commensal bacteria belonging to Bacteroides species. However, not much is known about the biogeography of crAssphage and whether certain strains are associated with specific human populations. In this study, we screened publicly available human gut metagenomic data from 3,341 samples for the presence of crAssphage sensu stricto (NC_024711.1). We found that crAssphage prevalence is low in traditional, hunter-gatherer populations, such as the Hadza from Tanzania and Matses from Peru, as compared to …


Combined Metagenomic And Phenomic Approaches Identify A Novel Salt Tolerance Gene From The Human Gut Microbiome, Eamon Culligan, Julian R. Marchesi, Colin Hill, Roy D. Sleator Apr 2014

Combined Metagenomic And Phenomic Approaches Identify A Novel Salt Tolerance Gene From The Human Gut Microbiome, Eamon Culligan, Julian R. Marchesi, Colin Hill, Roy D. Sleator

Department of Biological Sciences Publications

In the current study, a number of salt-tolerant clones previously isolated from a human gut metagenomic library were screened using Phenotype MicroArray (PM) technology to assess their functional capacity. PM's can be used to study gene function, pathogenicity, metabolic capacity and identify drug targets using a series of specialized microtitre plate assays, where each well of the microtitre plate contains a different set of conditions and tests a different phenotype. Cellular respiration is monitored colorimetrically by the reduction of a tetrazolium dye. One clone, SMG 9, was found to be positive for utilization/transport of L-carnitine (a well-characterized osmoprotectant) in the …