Open Access. Powered by Scholars. Published by Universities.®

Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Selected Works

HIV-1

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Microbiology

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom Jan 2015

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom

Celia A. Schiffer

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer Jul 2013

Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer

Celia A. Schiffer

Understanding the interdependence of multiple mutations in conferring drug resistance is crucial to the development of novel and robust inhibitors. As HIV-1 protease continues to adapt and evade inhibitors while still maintaining the ability to specifically recognize and efficiently cleave its substrates, the problem of drug resistance has become more complicated. Under the selective pressure of therapy, correlated mutations accumulate throughout the enzyme to compromise inhibitor binding, but characterizing their energetic interdependency is not straightforward. A particular drug resistant variant (L10I/G48V/I54V/V82A) displays extreme entropy-enthalpy compensation relative to wild-type enzyme but a similar variant (L10I/G48V/I54A/V82A) does not. Individual mutations of sites …