Open Access. Powered by Scholars. Published by Universities.®

Marine Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Marine Biology

Late Afternoon Seasonal Transition To Dissolution In A Coral Reef: An Early Warning Of A Net Dissolving Ecosystem?, Laura Stoltenberg, Kai G. Schulz, Coulson A. Lantz, Tyler Cyronak, Bradley D. Eyre Jan 2021

Late Afternoon Seasonal Transition To Dissolution In A Coral Reef: An Early Warning Of A Net Dissolving Ecosystem?, Laura Stoltenberg, Kai G. Schulz, Coulson A. Lantz, Tyler Cyronak, Bradley D. Eyre

Marine & Environmental Sciences Faculty Articles

There are concerns that reefs will transition from net calcifying to net dissolving in the near future due to decreasing calcification and increasing dissolution rates. Here we present in situ rates of net ecosystem calcification (NEC) and net ecosystem production (NEP) on a coral reef flat using a slack-water approach. Up until dusk, the reef was net calcifying in most months but shifted to net dissolution in austral summer, coinciding with high respiration rates and a lower aragonite saturation state (Ωarag). The estimated sediment contribution to NEC ranged from 8 – 21 % during the day and 45 …


The Role Of Symbiotic Algae In The Acclimatization Of Oculina Arbuscula To Ocean Acidification, Erin M. Arneson Jan 2021

The Role Of Symbiotic Algae In The Acclimatization Of Oculina Arbuscula To Ocean Acidification, Erin M. Arneson

Electronic Theses and Dissertations

Ocean acidification (OA) caused by CO2 emissions is projected to decrease seawater pH to 7.6 by 2100. Scleractinian corals are at risk because excess H+ in seawater binds to carbonate (CO32-), reducing its availability for CaCO3 skeletons. The energy demand for skeletal growth increases as pH decreases because corals must actively purge excess H+ from their seawater sourced calcifying fluid to maintain high calcification rates. In scleractinian corals it is hypothesized that photosynthesis by symbiotic algae is critical to meet this increased energy demand. To test this hypothesis, I conducted laboratory and field …