Open Access. Powered by Scholars. Published by Universities.®

Marine Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Marine Biology

Ocean Change Within Shoreline Communities: From Biomechanics To Behaviour And Beyond, Brian Gaylord, Kristina M. Barclay, Brittany M. Jellison, Laura L. Jurgens, Aaron T. Ninokawa, Emily B. Rivest, Lindsey R. Leighton Jan 2019

Ocean Change Within Shoreline Communities: From Biomechanics To Behaviour And Beyond, Brian Gaylord, Kristina M. Barclay, Brittany M. Jellison, Laura L. Jurgens, Aaron T. Ninokawa, Emily B. Rivest, Lindsey R. Leighton

VIMS Articles

Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities.In particular,we examine case examples of altered morphologies and material properties, disrupted consumer–prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the …


The Mystery Of Ocean Acidification, Patricia Thibodeau Jan 2017

The Mystery Of Ocean Acidification, Patricia Thibodeau

Reports

Grades: 9-12 Subjects: Biology | Life Science | Environmental Science | Chemistry

This lesson plan invites middle-school students to solve a mystery: what is ocean acidification and how is it affecting marine life in the Antarctic? To solve the mystery, students will participate in an ocean acidification scavenger hunt, and propose hypotheses and arrive at their own conclusions with interpretation of real-time data from the Antarctic.


Shell Condition And Survival Of Puget Sound Pteropods Are Impaired By Ocean Acidification Conditions, D. Shallin Busch, Michael Maher, Patricia Thibodeau, Paul Mcelhany Aug 2014

Shell Condition And Survival Of Puget Sound Pteropods Are Impaired By Ocean Acidification Conditions, D. Shallin Busch, Michael Maher, Patricia Thibodeau, Paul Mcelhany

VIMS Articles

We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460–500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600–1700 µatm CO2, Ωa≈1.17 …


Increased Feeding And Nutrient Excretion Of Adult Antarctic Krill, Euphausia Superba, Exposed To Enhanced Carbon Dioxide (Co2), Gk Saba, O Schofield, Jj Torres, Eh Ombres, Deborah K. Steinberg Dec 2012

Increased Feeding And Nutrient Excretion Of Adult Antarctic Krill, Euphausia Superba, Exposed To Enhanced Carbon Dioxide (Co2), Gk Saba, O Schofield, Jj Torres, Eh Ombres, Deborah K. Steinberg

VIMS Articles

Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (similar to 672 ppm), ingestion rates of krill averaged 78 mu g C individual(-1) d(-1) and were 3.5 times …