Open Access. Powered by Scholars. Published by Universities.®

Marine Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Marine Biology

Assessing The Hierarchy Of Long-Term Environmental Controls On Diatom Communities Of Yellowstone National Park Using Lacustrine Sediment Records, Victoria Chraibi, Sherilyn C. Fritz Jan 2020

Assessing The Hierarchy Of Long-Term Environmental Controls On Diatom Communities Of Yellowstone National Park Using Lacustrine Sediment Records, Victoria Chraibi, Sherilyn C. Fritz

Department of Earth and Atmospheric Sciences: Faculty Publications

An ecosystem’s ability to maintain structure and function following disturbance, defined as resilience, is influenced by a hierarchy of environmental controls, including climate, surface cover, and ecological relationships that shape biological community composition and productivity. This study examined lacustrine sediment records of naturally fishless lakes in Yellowstone National Park to reconstruct the response of aquatic communities to climate and trophic cascades from fish stocking. Sediment records of diatom algae did not exhibit a distinct response to fish stocking in terms of assemblage or algal productivity. Instead, 3 of 4 lakes underwent a shift to dominance by benthic diatom species from …


Standardized Short-Term Acute Heat Stress Assays Resolve Historical Differences In Coral Thermotolerance Across Microhabitat Reef Sites, Christian R. Voolstra, Carol Buitrago-López, Gabriela Perna, Anny Cárdenas, Benjamin C. C. Hume, Nils Rädecker, Daniel J. Barshis Jan 2020

Standardized Short-Term Acute Heat Stress Assays Resolve Historical Differences In Coral Thermotolerance Across Microhabitat Reef Sites, Christian R. Voolstra, Carol Buitrago-López, Gabriela Perna, Anny Cárdenas, Benjamin C. C. Hume, Nils Rädecker, Daniel J. Barshis

Biological Sciences Faculty Publications

Coral bleaching is one of the main drivers of reef degradation. Most corals bleach and suffer mortality at just 1–2°C above their maximum monthly mean temperatures, but some species and genotypes resist or recover better than others. Here, we conducted a series of 18‐hr short‐term acute heat stress assays side‐by‐side with a 21‐day long‐term heat stress experiment to assess the ability of both approaches to resolve coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we assessed …