Open Access. Powered by Scholars. Published by Universities.®

Marine Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Marine Biology

The Olympic Coast As A Sentinel: An Integrated Social-Ecological Regional Vulnerability Assessment To Ocean Acidification, Courtney Cochran Nov 2023

The Olympic Coast As A Sentinel: An Integrated Social-Ecological Regional Vulnerability Assessment To Ocean Acidification, Courtney Cochran

Benefits of Ocean Observing Catalog (BOOC)

Timestamp: 44862.4626207986 Email Address: courtney.cochran@noaa.gov Name: Courtney Cochran Affiliation: NOAA Affiliate (UCAR Contractor) Program Office/Division: Ocean Acidification Program Position Title: Program Specialist III Title of use case: The Olympic Coast as a Sentinel: An Integrated Social-Ecological Regional Vulnerability Assessment to Ocean Acidification Authors or Creators: Newton, J. ; Poe, M. ; Alin, S. ; Chadsey, M. ; Feely, R. ; Fradkin, S. ; Hagen, J. ; Ledford, J. ; Koehlinger, J. A. ; Schumacher, J. ; Siedlecki, S. ; Svec, R. ; Waddell, J. ; Watkinson-Schutten, M Affiliations of Authors or Creators: University of Washington Applied Physics Lab and the …


Photorespiration In Eelgrass (Zostera Marina L.): A Photoprotection Mechanism For Survival In A Co₂-Limited World, Billur Celebi-Ergin, Richard C. Zimmerman, Victoria J. Hill Jan 2022

Photorespiration In Eelgrass (Zostera Marina L.): A Photoprotection Mechanism For Survival In A Co₂-Limited World, Billur Celebi-Ergin, Richard C. Zimmerman, Victoria J. Hill

OES Faculty Publications

Photorespiration, commonly viewed as a loss in photosynthetic productivity of C3 plants, is expected to decline with increasing atmospheric CO2, even though photorespiration plays an important role in the oxidative stress responses. This study aimed to quantify the role of photorespiration and alternative photoprotection mechanisms in Zostera marina L. (eelgrass), a carbon-limited marine C3 plant, in response to ocean acidification. Plants were grown in controlled outdoor aquaria at different [CO2]aq ranging from ~55 (ambient) to ~2121 μM for 13 months and compared for differences in leaf photochemistry by simultaneous measurements of O2 flux and …


Ocean Change Within Shoreline Communities: From Biomechanics To Behaviour And Beyond, Brian Gaylord, Kristina M. Barclay, Brittany M. Jellison, Laura L. Jurgens, Aaron T. Ninokawa, Emily B. Rivest, Lindsey R. Leighton Jan 2019

Ocean Change Within Shoreline Communities: From Biomechanics To Behaviour And Beyond, Brian Gaylord, Kristina M. Barclay, Brittany M. Jellison, Laura L. Jurgens, Aaron T. Ninokawa, Emily B. Rivest, Lindsey R. Leighton

VIMS Articles

Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities.In particular,we examine case examples of altered morphologies and material properties, disrupted consumer–prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the …


Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle Feb 2017

Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle

OES Faculty Publications

CO2 is a critical and potentially limiting substrate for photosynthesis of both terrestrial and aquatic ecosystems. In addition to being a climate-warming greenhouse gas, increasing concentrations of CO2 will dissolve in the oceans, eliciting both negative and positive responses among organisms in a process commonly known as ocean acidification. The dissolution of CO2 into ocean surface waters, however, also increases its availability for photosynthesis, to which the highly successful, and ecologically important, seagrasses respond positively. Thus, the process might be more accurately characterized as ocean carbonation. This experiment demonstrated that CO2 stimulation of primary production enhances …


The Mystery Of Ocean Acidification, Patricia Thibodeau Jan 2017

The Mystery Of Ocean Acidification, Patricia Thibodeau

Reports

Grades: 9-12 Subjects: Biology | Life Science | Environmental Science | Chemistry

This lesson plan invites middle-school students to solve a mystery: what is ocean acidification and how is it affecting marine life in the Antarctic? To solve the mystery, students will participate in an ocean acidification scavenger hunt, and propose hypotheses and arrive at their own conclusions with interpretation of real-time data from the Antarctic.


Understanding Ocean Acidification Impacts On Organismal To Ecological Scales, Andreas J. Andersson, David I. Kline, Peter J. Edmunds, Stephen D. Archer, Nina Bednarsek, Robert C. Carpenter, Meg Chadsey, Philip Goldstein, Andrea G. Grottoli, Thomas P. Hurst, Andrew L. King, Janet E. Kübler, Ilsa B. Kuffner, Katherine R.M. Mackey, Bruce A. Menge, Adina Paytan, Ulf Riebesell, Astrid Schnetzer, Mark E. Warner, Richard C. Zimmerman Jan 2015

Understanding Ocean Acidification Impacts On Organismal To Ecological Scales, Andreas J. Andersson, David I. Kline, Peter J. Edmunds, Stephen D. Archer, Nina Bednarsek, Robert C. Carpenter, Meg Chadsey, Philip Goldstein, Andrea G. Grottoli, Thomas P. Hurst, Andrew L. King, Janet E. Kübler, Ilsa B. Kuffner, Katherine R.M. Mackey, Bruce A. Menge, Adina Paytan, Ulf Riebesell, Astrid Schnetzer, Mark E. Warner, Richard C. Zimmerman

OES Faculty Publications

Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater …


Meta-Analysis Reveals Complex Marine Biological Responses To The Interactive Effects Of Ocean Acidification And Warming, Ben P. Harvey, Dylan Gwynn-Jones, Philippa J. Moore Jan 2013

Meta-Analysis Reveals Complex Marine Biological Responses To The Interactive Effects Of Ocean Acidification And Warming, Ben P. Harvey, Dylan Gwynn-Jones, Philippa J. Moore

Research outputs 2013

Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, …