Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Laboratory and Basic Science Research

Expression Of G-Protein Inwardly Rectifying Potassium Channels (Girks) In Lung Cancer Cell Lines, Howard Plummer 3rd, Madhu Dhar, Maria Cekanova Ms, Rndr, Phd, Hildegard Schuller Aug 2005

Expression Of G-Protein Inwardly Rectifying Potassium Channels (Girks) In Lung Cancer Cell Lines, Howard Plummer 3rd, Madhu Dhar, Maria Cekanova Ms, Rndr, Phd, Hildegard Schuller

Maria Cekanova MS, RNDr, PhD

BACKGROUND: Previous data from our laboratory has indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. METHODS: GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU) assay. RESULTS: GIRK1 mRNA was expressed in three of six small …


Single-Channel Properties Of Human Nav1.1 And Mechanism Of Channel Dysfunction In Scn1a-Associated Epilepsy, C. Vanoye, Christoph Lossin, T. H. Rhodes, Alfred L. George Dec 2004

Single-Channel Properties Of Human Nav1.1 And Mechanism Of Channel Dysfunction In Scn1a-Associated Epilepsy, C. Vanoye, Christoph Lossin, T. H. Rhodes, Alfred L. George

Christoph Lossin, Ph.D.

Mutations in genes encoding neuronal voltage-gated sodium channel subunits have been linked to inherited forms of epilepsy. The majority of mutations (>100) associated with generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI) occur in SCN1A encoding the NaV1.1 neuronal sodium channel alpha-subunit. Previous studies demonstrated functional heterogeneity among mutant SCN1A channels, revealing a complex relationship between clinical and biophysical phenotypes. To further understand the mechanisms responsible for mutant SCN1A behavior, we performed a comprehensive analysis of the single-channel properties of heterologously expressed recombinant WT-SCN1A channels. Based on these data, we then determined the …