Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Laboratory and Basic Science Research

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra May 2024

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra

Rowan-Virtua Research Day

It is theorized that low concentrations of dopamine (DA) and norepinephrine (NE) within in the prefrontal cortex (PFC) following traumatic brain injury (TBI) leads to increased risky behavior. Our lab has shown that repeated mild TBI (rmTBI) sex-differentially increases risky behavior in a rodent model. Methylphenidate (MPH) is a psychostimulant drug used to treat symptoms of Attention-Deficit Hyperactivity Disorder (ADHD), also driven by a hypo-catecholaminergic PFC. MPH elevates catecholamine levels by blocking DA and NE transporters, DAT and NET. While the potential of psychostimulants to treat post-TBI symptoms have been explored, the effects of sub-chronic MPH on transporter levels following …


Comparative Analyses Of Adeno-Associated Viral Vector Serotypes 1, 2 And 9 In The Sod Mouse Model Of Amyotrophic Lateral Sclerosis, Talia Hartman, Jeremy Francis, Paola Leone May 2024

Comparative Analyses Of Adeno-Associated Viral Vector Serotypes 1, 2 And 9 In The Sod Mouse Model Of Amyotrophic Lateral Sclerosis, Talia Hartman, Jeremy Francis, Paola Leone

Rowan-Virtua Research Day

6–7-week-old G93A SOD mice were given 1x1010 vector genomes of three different self-complimentary (sc) AAV capsid serotypes (AAV1, 2, and 9) all containing an identical CBh-driven GFP reporter expression cassette. Each serotype was delivered via either the intrathecal (IT) or intra cisterna magna (ICM) route of administration (ROA). Transduction by each serotype, via each of the two ROA was compared for the cortex and each of the lumbar, thoracic, and cervical regions of the spinal cord, with percent neuronal tropism calculated in each region. AAV2 was effective at transducing spinal cord neurons but disappointingly ineffective at transducing cortical neurons by …


A Preliminary Report On The Role Of Lipoxin A4 In Reinstating The Blood-Brain Barrier Integrity In A Rodent Model Of Acute Inflammation With Impaired Cerebrovasculature, Minjal Patel, Shruti Varshney, Ananya Nethikunta, George G. Godsey, Mary C. Kosciuk, Ana Rodriguez, Bernd Spur, Kingsley Yin, Randel L. Swanson, Venkat Venkataraman, Robert G. Nagele, Nimish Acharya May 2024

A Preliminary Report On The Role Of Lipoxin A4 In Reinstating The Blood-Brain Barrier Integrity In A Rodent Model Of Acute Inflammation With Impaired Cerebrovasculature, Minjal Patel, Shruti Varshney, Ananya Nethikunta, George G. Godsey, Mary C. Kosciuk, Ana Rodriguez, Bernd Spur, Kingsley Yin, Randel L. Swanson, Venkat Venkataraman, Robert G. Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: The blood-brain barrier (BBB) is responsible for maintaining brain homeostasis and ultimately proper neuronal function. Disruption of the BBB, leading to increased BBB permeability, has been reported in several neurodegenerative diseases, including Alzheimer’s disease (AD) and traumatic brain injury (TBI). Lipoxins (LXs) are a class of arachidonate-derived eicosanoids, which are a class of specialized pro-resolving lipid mediators (SPMs). SPMs are known to inhibit immune response through inhibition of cellular infiltration, downregulation of pro-inflammatory mediators and upregulation of anti-inflammatory mediators. Hence, LXs are recognized as “breaking signals” in the inflammatory process. One form of LXs, Lipoxin A4 (LXA4) …


Effects Of Sex And Estrous Cycle On Intravenous Oxycodone Self-Administration And The Reinstatement Of Oxycodone-Seeking Behavior In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Corinne A. Gallagher, Claire M. Corbett, Daniel F. Manvich Jul 2023

Effects Of Sex And Estrous Cycle On Intravenous Oxycodone Self-Administration And The Reinstatement Of Oxycodone-Seeking Behavior In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Corinne A. Gallagher, Claire M. Corbett, Daniel F. Manvich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The increasing misuse of both prescription and illicit opioids has culminated in a national healthcare crisis in the United States. Oxycodone is among the most widely prescribed and misused opioid pain relievers and has been associated with a high risk for transition to compulsive opioid use. Here, we sought to examine potential sex differences and estrous cycle-dependent effects on the reinforcing efficacy of oxycodone, as well as on stress-induced or cue-induced oxycodone-seeking behavior, using intravenous (IV) oxycodone self-administration and reinstatement procedures. In experiment 1, adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone according to a …


Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes Jun 2023

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes

Graduate School of Biomedical Sciences Theses and Dissertations

The locus coeruleus (LC), the primary site of brain norepinephrine (NE), is a key anatomical brain region implicated in the stress response. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive change and restoration of homeostasis. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic-pituitary-adrenal (HPA) axis. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of anxiety disorders. Previous studies demonstrate the effects of acute stress in increasing LC …


Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya May 2023

Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: Increased blood-brain barrier (BBB) permeability is reported in both the neuropathological and in vivo studies in both Alzheimer’s Disease (AD) and age matched cognitively normal, no cognitive impairment (NCI), subjects. Impaired BBB allows various vascular components such as immunoglobulin G (IgG) to extravasate into the brain and specifically bind to various neuronal surface proteins (NSP), also known as brain reactive autoantibodies (BrABs). This interaction is predicted to further enhance deposition of amyloid plaques.

Hypothesis: Interaction between extravasated BrABs and its cognate NSPs lower the expression of that NSPs in AD patients.

Methods: We selected Western blotting technique to study …


Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould May 2023

Swallowing Disrupts Tongue-Jaw Coordination During Chewing In A Rat Model Of Parkinson's Disease, Meejan Palhang, N. Charles, Francois Gould

Rowan-Virtua Research Day

The primary motor symptoms of Parkinson’s disease, including bradykinesia, rigidity, and tremor, are associated with difficulties regulating transitions between motor behaviors due to basal ganglia dysfunction. Chewing and swallowing, which are disordered in most patients with Parkinson’s disease, are two complex motor behaviors which overlap in time and share some neuromuscular components. The objective of this study is to identify how Parkinson’s disease affects the coordination of chewing and swallowing. We hypothesize that as a result of impaired regulation of shift between motor patterns, chewing cycles that occur with a swallow will be more affected that chewing cycles occurring in …


Mglu5 Inhibition In The Basolateral Amygdala Prevents Estrous Cycle-Dependent Changes In Cue-Induced Cocaine Seeking, Claire M. Corbett, Emily N. D. Miller, Jessica A. Loweth Mar 2023

Mglu5 Inhibition In The Basolateral Amygdala Prevents Estrous Cycle-Dependent Changes In Cue-Induced Cocaine Seeking, Claire M. Corbett, Emily N. D. Miller, Jessica A. Loweth

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Drug associated cues are a common relapse trigger for individuals recovering from cocaine use disorder. Sex and ovarian hormones influence patterns of cocaine use and relapse vulnerability, with studies indicating that females show increased cue-induced craving and relapse vulnerability compared to males. In a rodent model of cocaine craving and relapse vulnerability, cue-induced cocaine seeking behavior following weeks of withdrawal from extended-access cocaine self-administration is higher in females in the estrus stage of the reproductive (estrous) cycle (Estrus Females) compared to both Males and females in all other stages (Non-Estrus Females). However, the neuronal substrates and cellular mechanisms underlying these …


Examining Levels Of Catecholamine Neurotransmitter Regulatory Proteins Within The Prefrontal Cortex Of Rodents Following Traumatic Brain Injury, Eleni Papadopoulos, Christopher P. Knapp, Claire M. Corbett, Jessica Loweth, Rachel L. Navarra May 2022

Examining Levels Of Catecholamine Neurotransmitter Regulatory Proteins Within The Prefrontal Cortex Of Rodents Following Traumatic Brain Injury, Eleni Papadopoulos, Christopher P. Knapp, Claire M. Corbett, Jessica Loweth, Rachel L. Navarra

Rowan-Virtua Research Day

Traumatic brain injury (TBI) resulting from impact to the head can cause long lasting impairments of cognitive processes that lead to increased risk-taking behavior in clinical populations. Our laboratory has recently shown that female, but not age-matched male, rats increase preference for risky choices after multiple experimentally-induced mild TBI’s. Our overarching goal is to understand the neural mechanisms underlying TBI-induced increases in risk-taking behavior.

The prefrontal cortex (PFC) plays a prominent role in risk-based decision making. Sub[1]regions of the PFC include the medial PFC (mPFC), the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC), and these sub[1]regions play specific …


Investigating The Role Of The Basolateral Amygdala Plays In The Incubation Of Cue-Induced Cocaine Seeking Behavior, Claire Marie Corbett Apr 2022

Investigating The Role Of The Basolateral Amygdala Plays In The Incubation Of Cue-Induced Cocaine Seeking Behavior, Claire Marie Corbett

Graduate School of Biomedical Sciences Theses and Dissertations

Cocaine use disorder is a chronic, relapsing brain disease. Sex and ovarian hormones are known to influence cocaine addiction liability and relapse vulnerability. However, little is known regarding the cellular and synaptic mechanisms contributing to sex differences in relapse vulnerability, including how these measures are influenced by hormonal fluctuations. To investigate sex differences in relapse vulnerability we use a rodent model of cocaine craving and relapse called the incubation model in which cue-induced seeking progressively increases or “incubates” during the first month of withdrawal from extended-access cocaine self-administration. Using this model, we have recently shown that females in the estrus …


Neuroactivational And Behavioral Correlates Of Psychosocial Stress-Induced Cocaine Seeking In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Desta M. Pulley, Stephany J. Mcdonald, Samantha De Guzman, Nicole E. Hubbard, Colin M. Kulick-Soper, Jessica J. Debski, Bianca Patel, Daniel Manvich May 2021

Neuroactivational And Behavioral Correlates Of Psychosocial Stress-Induced Cocaine Seeking In Rats, Nicole M. Hinds, Ireneusz D. Wojtas, Desta M. Pulley, Stephany J. Mcdonald, Samantha De Guzman, Nicole E. Hubbard, Colin M. Kulick-Soper, Jessica J. Debski, Bianca Patel, Daniel Manvich

Rowan-Virtua Research Day

A prominent feature of cocaine abuse is a high risk of relapse even despite prolonged periods of abstinence. Psychosocial stress is thought to be a major contributor to the onset of cocaine craving and relapse in human substance abusers, yet most preclinical models of stress-induced relapse employ physical stressors (e.g., unpredictable footshock) or pharmacological stressors (e.g., yohimbine to elicit a drug seeking response) and do not rely upon psychosocial stress per se. Importantly, social stressors are well known to activate distinct neural circuits within the brain as compared to other stressors. It is therefore possible that currently available animal models …


Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna Apr 2021

Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna

Graduate School of Biomedical Sciences Theses and Dissertations

Stress is a physiological state characterized by behavioral arousal that occurs during exposure to harmful or threatening stimuli, and usually facilitates an adaptive behavioral response. The persistence of stress sometimes causes it to become maladaptive, potentially contributing to disease development, including physiological complications with altered neuroendocrine signaling and impaired function of organ systems, and psychological conditions including depression and anxiety. Anxiety disorders in particular are associated with a history of stress and are the most common class of mental disorders, with a lifetime prevalence of 33.7% in the general population. The locus coeruleus (LC) is a major node in the …


Elucidation Of The Mechanisms By Which Anesthetics Induce Blood-Brain Barrier Breakdown And Delirium In The Elderly, George A. Godsey Ii Apr 2020

Elucidation Of The Mechanisms By Which Anesthetics Induce Blood-Brain Barrier Breakdown And Delirium In The Elderly, George A. Godsey Ii

Graduate School of Biomedical Sciences Theses and Dissertations

Delirium is a highly prevalent neuropsychiatric or neurocognitive disorder that presents a major problem to modern healthcare. Patients suffering from delirium normally have a worse prognosis, prolonged hospital stay, increased hospital cost, long-term cognitive impairment, and higher mortality rates. Many factors can predispose one to develop delirium, which makes treating this disorder a daunting task. Unfortunately, delirium is the most common psychiatric syndrome found in the hospital setting. In fact, a form of delirium known as postoperative delirium (POD) is one of the most common postoperative complications faced by elderly patients undergoing surgery.

POD is a major problem in modern …


The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert Aug 2018

The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert

Graduate School of Biomedical Sciences Theses and Dissertations

Developmental timing is a key aspect of tissue and organ formation in which distinct cell types are generated through a series of steps from common progenitors. These progenitors undergo specific changes in gene expression that signifies both a distinct progenitor type and developmental time point that thereby specifies a particular cell fate at that stage of development. The nervous system is an important setting for understanding developmental timing because different cell types are produced in a certain order and the switch from stem cells to progenitors requires precise timing and regulation. Notable examples of such regulatory molecules include the RNA-binding …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang Aug 2017

Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang

Graduate School of Biomedical Sciences Theses and Dissertations

All organisms have an internal clock with a defined period between repetitions of activities. The period for circadian clock in human is 24.5 hours, while in mouse and rat, it is 23.5 hours. However, all organisms are forced to be in synchronization with their environment. A major environmental force that resets the internal clock to 24 hours is light. This phenomenon is defined as “light entrainment” or “phase-setting”. It is unclear how this entrainment process occurs. Studies from this laboratory indicate a role for two neuronal calcium sensor proteins: Neurocalcin  (NCALD) and S100B. For these two genes, mRNA as …


Understanding The Differences Between Neuronal Calcium Sensor Proteins: A Comparison Of Neurocalcin Delta And Hippocalcin, Jeffrey M. Viviano Nov 2016

Understanding The Differences Between Neuronal Calcium Sensor Proteins: A Comparison Of Neurocalcin Delta And Hippocalcin, Jeffrey M. Viviano

Graduate School of Biomedical Sciences Theses and Dissertations

Many neuronal functions, including learning and memory are driven by changes in intracellular Ca2+concentrations. The Neuronal Calcium Sensor (NCS) family of proteins is responsible for mediating the response to calcium. They are typically comprised of 4 EF hands; of which EF 2, 3, and 4 bind calcium.

Hypothesis: NCS proteins carry out unique, non-overlapping functions, and that specific characteristics of the family can be mapped to precise regions of the proteins.

Results: The effect on the following properties were investigated primarily on two highly similar NCS proteins, Neurocalcin Delta (NCALD) and Hippocalcin (HPCA): (1) Response to calcium was determined through …


Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser Aug 2016

Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser

Graduate School of Biomedical Sciences Theses and Dissertations

Brain homeostasis can be affected in a number of ways that lead to gross anatomical, cellular, and molecular disturbances giving rise to diseases like Alzheimer’s disease (AD) and related dementias. Unfortunately, the mechanistic pathoetiology of AD’s hallmark features of cerebral amyloid plaque buildup and neuronal death are still disputed. Using human brain AD sections, immunohistochemistry experiments revealed internalized surface proteins, co-localized to an expanded lysosomal compartment. Other stains for amyloid-β1-42 (Aβ42) and various immunoglobulin (Ig) species displayed them leaking out of the cerebrovasculature through a dysfunctional blood-brain barrier (BBB), binding to neurons in the vicinity, and localizing to intracellular vesicles …