Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Laboratory and Basic Science Research

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Hypoxia Activated Prodrug And Anti-Angiogenic Therapy Cooperate To Treat Pancreatic Cancer But Elicit Immune Suppressive G-Mdsc Infiltration, Arthur Liu May 2023

Hypoxia Activated Prodrug And Anti-Angiogenic Therapy Cooperate To Treat Pancreatic Cancer But Elicit Immune Suppressive G-Mdsc Infiltration, Arthur Liu

Dissertations & Theses (Open Access)

We previously showed that the hypoxia-activated prodrug TH-302 (Evofosfamide) reduces intratumoral hypoxia through a tissue remodeling process, initiates tumor vasculature reorganization, and sensitizes aggressive, spontaneous murine models of prostate cancer to immune checkpoint blockade (ICB). In a clinical trial testing the combination of TH-302 with cytotoxic T-lymphocyte-associated protein (CTLA-4) blockade (NCT03098160) a subset of metastatic, ICB refractory patients showed prolonged progression free survival. While these studies highlight hypoxia as therapeutically tractable, we lack a complete understanding of the contribution of the tumor vasculature to hypoxia reduction therapy, as well as the downstream consequences of hypoxia reduction on the cellular composition …


Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing May 2023

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing

Dissertations & Theses (Open Access)

Systemic sclerosis (SSc; scleroderma) is a chronic systemic autoimmune and connective tissue disorder characterized by vasculopathy, autoimmune phenomena, and widespread fibrosis. Skin thickening and tightening is the cardinal feature of SSc and is responsible, in part, for the considerable morbidity of this disease. There are currently no targeted treatments for skin manifestations in SSc, primarily due to our fragmented understanding of its pathophysiologic mechanisms. In PART I, we report a previously unappreciated link between aberrant expression of the developmental gene sine oculis homeobox homolog 1 (SIX1) in skin-associated adipocytes in SSc skin and the early loss of dermal white adipose …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


4d Ex Vivo Crispr/Cas9 Whole-Genome Screen To Identify Genes Regulating Lung Cancer Metastasis, Alexandria Plumer Dec 2021

4d Ex Vivo Crispr/Cas9 Whole-Genome Screen To Identify Genes Regulating Lung Cancer Metastasis, Alexandria Plumer

Dissertations & Theses (Open Access)

Metastatic lung cancer has a 5-year survival rate of 5%. Lung cancers tend to be asymptomatic until late stages, and almost 90% are not diagnosed until they are advanced. Metastases are very rare events, often initiated by a single cell from a primary tumor into a new niche at a distant location. Investigation of the early metastatic process is of urgent need for the development of early diagnostics and targeted therapeutics. We performed a proof-of-concept CRISPR/Cas9 whole genome knockout screen in the A549 lung adenocarcinoma cell line and utilized a novel ex vivo 4D lung metastasis model to find gene …


Assessing The Outcomes Of Blocking Ccl2-Ccr2 Signaling Axis On Breast Cancer Brain Metastasis, Yutao Qi May 2021

Assessing The Outcomes Of Blocking Ccl2-Ccr2 Signaling Axis On Breast Cancer Brain Metastasis, Yutao Qi

Dissertations & Theses (Open Access)

Breast cancer brain metastases have remained one of the most intense challenges for precision cancer therapeutics, but current treatment options are limited and not curative. Recently, our lab reported that adoptive PTEN downregulation in metastatic breast tumor cells activates PI3K/NF-ƙB signaling and increases the secretion of the chemokine CCL2, which enhances the chemotaxis of CCR2+ myeloid cells, a major subpopulation of bone marrow-derived myeloid cells (BMDMs), from peripheral blood into the brain tumor microenvironment (TME), eventually promoting brain metastasis outgrowth by driving immune suppression. Here, in this project we have been aiming to develop effective therapies by immune-modulating the …


Understanding Intercellular Signaling During Lung Injury-Repair, Margo Patricia Cain May 2020

Understanding Intercellular Signaling During Lung Injury-Repair, Margo Patricia Cain

Dissertations & Theses (Open Access)

The mammalian lung is a complex system of specialized cell types with precise spatial organization designed to cooperate to perform gas exchange. These cell types together coordinate organ development, homeostasis, and repair after injury through signals either presented or secreted, known as ligands, to be received by receptors on the surface of another, or in some cases, the same cell. The alveolar region of the lung, the primary region of gas exchange, responds to various types of injuries with different lung repair mechanisms. In order to explore how the various cell types in the lung communicate to drive tissue repair …


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

Dissertations & Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point …


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

Dissertations & Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific …


Identification And Utility Of Dna In Exosomes, Paul Kurywchak May 2018

Identification And Utility Of Dna In Exosomes, Paul Kurywchak

Dissertations & Theses (Open Access)

Cancer-associated mortality has been declining for two decades but remains a significant public health problem, especially when patients initially present with advanced disease. Early detection methods have improved survival rates but remain unavailable for a majority of cancers due to a lack of sensitive biomarkers or numerous limitations associated with current diagnosis strategies. Approaches to develop “liquid biopsies” by detecting tumor cells or DNA in the blood have led to several breakthroughs and create the potential for non-invasive, routine assessment of diseases status. However, these biomarkers are rare and currently difficult to isolate, especially in the early stages of disease. …


Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry Dec 2017

Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) affects various mucosal sites of the upper aerodigestive tract, including the nasal and oral cavities, the nasopharynx, and the oropharynx. More than five hundred thousand new cases of HNSCC occurred in 2011 alone, with 50,000 reported cases in the United States. This trend made HNSCC the seventh most common non-skin cancer worldwide (Ferlay et al., 2015). Although significant epidemiological and pathological advancements have been made, survival rates have not improved much over the last 40 years, leaving a mortality rate that remains at approximately 50%. An unbiased drug screen demonstrated that HNSCC cell …


The Role Of The Epithelial-To-Mesenchymal Transition (Emt) In Lung Cancer Progression, David H. Peng Aug 2017

The Role Of The Epithelial-To-Mesenchymal Transition (Emt) In Lung Cancer Progression, David H. Peng

Dissertations & Theses (Open Access)

Lung cancer is the leading cause of cancer-related deaths due to conventional therapy resistance and metastatic disease, therefore understanding the mechanisms governing these biological functions is vital for improving patient survival. Approximately 30% of patients with the adenocarcinoma histologic subset of lung cancer possess an activating KRAS mutation, characterized by a lack of response to chemotherapies with a poor overall 5-year survival rate. Despite the mutational frequency, KRAS remains a challenge to pharmacologically inhibit and current drugs undergoing clinical trials that target specific downstream effector proteins of KRAS, such as MEK inhibitors, have failed to produce significant clinical benefits. Previous …


Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno Aug 2017

Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno

Dissertations & Theses (Open Access)

Triple-negative (TNBC) and inflammatory (IBC) breast cancer are the most aggressive forms of breast cancer, accounting for 20% and 10% of cancer-related deaths, respectively. Among IBC cases, 30% are additionally classified with TNBC molecular pathology, a diagnosis that significantly worsens patient’s prognosis. The current lack of TNBC and IBC molecular understanding prevents the development of effective therapeutic strategies. To identify effective treatments, we explored aberrant apoptosis pathways and cell membrane fluidity as novel therapeutic targets.

We first identified an effective therapeutic strategy against TNBC and IBC by pro-apoptotic protein NOXA-mediated inhibition of the anti-apoptotic protein MCL1 following inhibition of histone …


Investigation Of The Roles Of Asf1 And Caf-1-Mediated Chromatin Assembly In The Human Dna Damage Response, Ting-Hsiang Huang May 2017

Investigation Of The Roles Of Asf1 And Caf-1-Mediated Chromatin Assembly In The Human Dna Damage Response, Ting-Hsiang Huang

Dissertations & Theses (Open Access)

The access-repair-restore model for the role of chromatin in DNA repair infers that chromatin is a mere obstacle to DNA repair. However, here we show that blocking chromatin assembly of newly-synthesized histones, via knockdown of the histone chaperones ASF1A, CAF-1 or a mutation that specifically prevents ASF1 binding to histones, hinders loading of Rad51 onto ssDNA during homologous recombination, as a consequence of reduced recruitment of the Rad51 loader MMS22L/TONSL to ssDNA, resulting in persistent RPA foci, extensive DNA end-resection, and persistent activation of the ATR-Chk1 pathway. By contrast, ASF1 and CAF-1 render the rapid inactivation of ATM Chk2 pathway …


The Role Of The Diras Family Members In Regulating Ras Function, Cancer Growth And Autophagy, Margie Nicole Sutton May 2017

The Role Of The Diras Family Members In Regulating Ras Function, Cancer Growth And Autophagy, Margie Nicole Sutton

Dissertations & Theses (Open Access)

DIRAS3 is a maternally imprinted tumor suppressor gene that is downregulated by multiple mechanisms across several tumor types. When re-expressed, DIRAS3 decreases proliferation, inhibits motility, and induces autophagy and tumor dormancy. DIRAS3 encodes a 26 kDa small GTPase with 60% homology to Ras and Rap, differing from oncogenic Ras family members by a 34-amino acid N-terminal extension that is required for its tumor suppressive function in ovarian cancer. By assessing the structure-function relationship, I found that DIRAS3 inhibits Ras-induced transformation and is a natural antagonist of Ras/MAPK signaling. DIRAS3 binds directly to Ras and disrupts cluster formation inhibiting the activation …


Regulation Of Breast Cancer Initiation And Progression By 14-3-3zeta, Chia-Chi Chang Aug 2016

Regulation Of Breast Cancer Initiation And Progression By 14-3-3zeta, Chia-Chi Chang

Dissertations & Theses (Open Access)

14-3-3ζ is a ubiquitously expressed family member of proteins that have been implicated to have oncogenic potential through its interactions and involvement in cancer initiation and progression. 14-3-3ζ belongs to the highly conserved 14-3-3ζ protein family and modulates numerous pathways in cancer. Overexpression of 14-3-3ζ is an early event, occurs in more than 40% of human breast cancer cases, and is associated with disease recurrence and poor prognosis. Metabolic reprogramming is a hallmark of cancer. Cancer cells elevate aerobic glycolysis to produce metabolic intermediates and reducing equivalents, thereby facilitating cellular adaptation to the adverse environment and sustaining fast proliferation. Interestingly, …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Mdm2-Mediated Degradation Of Sirt6 Phosphorylated By Akt1 Promotes Tumorigenesis And Trastuzumab Resistance In Breast Cancer, Umadevi Thirumurthi Dec 2014

Mdm2-Mediated Degradation Of Sirt6 Phosphorylated By Akt1 Promotes Tumorigenesis And Trastuzumab Resistance In Breast Cancer, Umadevi Thirumurthi

Dissertations & Theses (Open Access)

Sirtuin6 (SIRT6) is one of the members of the Sirtuin family and functions as a longevity assurance gene by promoting genomic stability. It also regulates various cancer-associated pathways and was recently established as a bonafide tumor suppressor in colon cancer. This suggests that SIRT6 is an attractive target for pharmacological activation in cancer treatment, and hence, identification of potential regulators of SIRT6 would be an important and critical contribution towards cancer treatment. Here, we show that AKT1 phosphorylates SIRT6 at Ser338 and induces MDM2-SIRT6 interaction, priming SIRT6 for degradation via the MDM2-dependent ubiquitin-proteasome pathway. Blocking SIRT6 Ser338 phosphorylation …


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …


Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes Dec 2014

Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes

Dissertations & Theses (Open Access)

Inflammatory breast cancer (IBC) and triple-negative breast cancer (TNBC) are two highly aggressive breast cancer subtypes associated with a poor outcome. Despite sensitivity to current treatment, these breast cancers subtypes have a high recurrence rate and proclivity to metastasize early. The aggressiveness of IBC and TNBC have been linked to CSCs and epithelial to mesenchymal transition (EMT), which are critical features of breast cancer progression and metastasis. The clinical challenge faced in the treatment of IBC and TNBC is finding a treatment strategy to target the cancer stem-like (CSC) population to block metastasis. Cyclooxygenase-2 (COX-2) and receptor activator of nuclear …


Sustained Adrenergic Signaling Promotes Cervical Cancer Progression, Nouara C. Sadaoui Dec 2014

Sustained Adrenergic Signaling Promotes Cervical Cancer Progression, Nouara C. Sadaoui

Dissertations & Theses (Open Access)

Background: Chronic stress and sustained adrenergic signaling are known to promote tumor progression. The underlying mechanisms behind this process are not well understood. We examined the effects of sustained adrenergic signaling on cervical cancer progression through increased expression of HPV oncogenes, E6 and E7.

Materials and Methods: ADRβ expression levels were examined in patient-derived cervical cancer samples. We used an orthotopic model of cervical cancer to investigate the effects of restraint stress on tumor growth and metastasis. We evaluated the in vivo effects of a β-blocker, propranolol, and HPV E6/E7 siRNA. In vitro, ADRβ positive cervical cancer cells were …


Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope Aug 2014

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope

Dissertations & Theses (Open Access)

The majority of proteins require molecular chaperones to assist their folding into tertiary and quaternary structures. Certain stresses can compromise the weak hydrophobic forces responsible for these structures and lead to protein unfolding, misfolding, and aggregation. Aggregates of proteins are hallmarks of devastating diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Fortunately, bacteria, plants, and fungi have a potent disaggregase, named Hsp104 in Saccharomyces cerevisiae. Recently, heat-induced aggregates, termed Q-bodies, were found to contain three molecular chaperones: Hsp70, Hsp104, and Hsp42. Their coalescence from small puncta into larger inclusions required Hsp104. During glucose deprivation, a stress that isn’t known to …


Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti Aug 2014

Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti

Dissertations & Theses (Open Access)

After many years of cancer research, it is well accepted by the scientific community that the future cure for this disease lies in a personalized therapeutic approach. Anticipating therapeutic outcome based on the genetic signature of a tumor has become the new paradigm. The PI3K pathway represents an ideal target for bladder cancer, as many of the key proteins of this pathway are altered or mutated in this particular type of cancer. Several small molecule inhibitors have been developed to target this pathway, but their efficacy has been shown to be heterogeneous among different cell lines and mostly cytostatic but …


Developmental And Molecular Functions Of Plakophilin-3, William A. Munoz Dec 2013

Developmental And Molecular Functions Of Plakophilin-3, William A. Munoz

Dissertations & Theses (Open Access)

Plakophilin-3, the less studied member of the plakophilin-catenin subfamily, and the larger catenin family, binds directly to desmosomal cadherin cytoplasmic domains and enhances desmosome formation and stability. In mammals, plakophilin-3 is expressed at the highest levels in desmosome-enriched tissues such as epithelia, with the knock-out in mice producing corresponding reductions in ectodermal integrity. In tissue, cellular and intracellular contexts where plakophilin-3 is not at the desmosomal plaque, little is known about its functions in the cytoplasm or nucleus, where it also localizes.

My work employed embryos of the amphibian, Xenopus laevis, to examine plakophilin-3’s developmental roles. I first evaluated …


Characterization Of Jak, Stat, And Src Interactions In Head And Neck Squamous Cell Carcinoma, Reshma Jaseja, Reshma Jaseja Aug 2013

Characterization Of Jak, Stat, And Src Interactions In Head And Neck Squamous Cell Carcinoma, Reshma Jaseja, Reshma Jaseja

Dissertations & Theses (Open Access)

Recurrence of Head and Neck Squamous Cell Carcinoma (HNSCC) is common; thus, it is essential to improve the effectiveness and reduce toxicity of current treatments. Proteins in the Src/Jak/STAT pathway represent potential therapeutic targets, as this pathway is hyperactive in HNSCC and it has roles in cell migration, metastasis, proliferation, survival, and angiogenesis. During short-term Src inhibition, Janus kinase (Jak) 2, and signal transducer and activator of transcription (STAT) 3 and STAT5 are dephosphorylated and inactivated. Following sustained Src inhibition, STAT5 remains inactive, but Jak2 and STAT3 are reactivated following their early inhibition. To further characterize the mechanism of this …


Lmw-E Mediates Mammary Tumorigenesis By Deregulating Acinar Morphogenesis & Generating Cancer Stem Cells, Mylinh T. Duong May 2012

Lmw-E Mediates Mammary Tumorigenesis By Deregulating Acinar Morphogenesis & Generating Cancer Stem Cells, Mylinh T. Duong

Dissertations & Theses (Open Access)

Cyclin E is the regulatory subunit of the cyclin E/CDK2 complex that

mediates the G1-S phase transition. N-terminal cleavage of cyclin E by elastase in

breast cancer generates two low molecular weight (LMW) isoforms that exhibit both

enhanced kinase activity and resistance to p21 and p27 inhibition compared to fulllength cyclin E. Clinically, approximately 27% of breast cancer patients overexpress

LMW-E and associate with poor survival. Therefore, we hypothesize that LMW-E

disrupts normal mammary acinar morphogenesis and serves as the initial route into

breast tumor development. We first demonstrate that LMW-E overexpression in

non-tumorigenic hMECs is sufficient to induce tumor …


Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall May 2012

Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall

Dissertations & Theses (Open Access)

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are …


The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent Aug 2011

The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent

Dissertations & Theses (Open Access)

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to …


Dynamic Remodeling Of The Stressed Heart: Role Of Protein Degradation Pathways, Deborah Vela Dec 2010

Dynamic Remodeling Of The Stressed Heart: Role Of Protein Degradation Pathways, Deborah Vela

Dissertations & Theses (Open Access)

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may …


New Target Genes For Tumor Suppressors P53 And P73 In Regenerating Liver, Svitlana M. Kurinna May 2010

New Target Genes For Tumor Suppressors P53 And P73 In Regenerating Liver, Svitlana M. Kurinna

Dissertations & Theses (Open Access)

The p53-family of proteins regulates expression of target genes during tissue development and differentiation. Within the p53-family, p53 and p73 have hepatic-specific functions in development and tumor suppression. Despite a growing list of p53/p73 target genes, very few of these have been studied in vivo, and the knowledge regarding functions of p53 and p73 in normal tissues remains limited. p53+/-p73+/- mice develop hepatocellular carcinoma (HCC), whereas overexpression of p53 in human HCC leads to tumor regression. However, the mechanism of p53/p73 function in liver remains poorly characterized. Here, the model of mouse liver regeneration is used to identify new target …