Open Access. Powered by Scholars. Published by Universities.®

Computational Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computational Biology

Towards More Complete Metagenomic Analyses Through Circularized Genomes And Conjugative Elements, Benjamin R. Joris Aug 2022

Towards More Complete Metagenomic Analyses Through Circularized Genomes And Conjugative Elements, Benjamin R. Joris

Electronic Thesis and Dissertation Repository

Advancements in sequencing technologies have revolutionized biological sciences and led to the emergence of a number of fields of research. One such field of research is metagenomics, which is the study of the genomic content of complex communities of bacteria. The goal of this thesis was to contribute computational methodology that can maximize the data generated in these studies and to apply these protocols human and environmental metagenomic samples.

Standard metagenomic analyses include a step for binning of assembled contigs, which has previously been shown to exclude mobile genetic elements, and I demonstrated that this phenomenon extends to all conjugative …


Methods And Tools To Improve Performance Of Plant Genome Analysis, Drew Ferrell Aug 2022

Methods And Tools To Improve Performance Of Plant Genome Analysis, Drew Ferrell

Theses and Dissertations

Multi -omics data analysis and integration facilitates hypothesis building toward an understanding of genes and pathway responses driven by environments. Methods designed to estimate and analyze gene expression, with regard to treatments or conditions, can be leveraged to understand gene-level responses in the cell. However, genes often interact and signal within larger structures such as pathways and networks. Complex studies guided toward describing dynamic genetic pathways and networks require algorithms or methods designed for inference based on gene interactions and related topologies. Classes of algorithms and methods may be integrated into generalized workflows for comparative genomics studies, as multi -omics …


Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


In Silico Characterization Of Protein-Protein Interactions Mediated By Short Linear Motifs, Heidy Elkhaligy Jun 2022

In Silico Characterization Of Protein-Protein Interactions Mediated By Short Linear Motifs, Heidy Elkhaligy

FIU Electronic Theses and Dissertations

Short linear motifs (SLiMs), often found in intrinsically disordered regions (IDPs), can initiate protein-protein interactions in eukaryotes. Although pathogens tend to have less disorder than eukaryotes, their proteins alter host cellular function through molecular mimicry of SLiMs. The first objective was to study sequence-based structure properties of viral SLiMs in the ELM database and the conservation of selected viral motifs involved in the virus life cycle. The second objective was to compare the structural features for SliMs in pathogens and eukaryotes in the ELM database. Our analysis showed that many viral SliMs are not found in IDPs, particularly glycosylation motifs. …


Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter Jun 2022

Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter

Dissertations

ABSTRACT

RNA interference (RNAi) is a pervasive gene regulatory mechanism in eukaryotes based on the action of multiple classes of small RNA (sRNA). Exploiting RNAi pathways in non-model systems have great potential for creating potent RNAi technologies. Here, we accessed RNAi-mediated control of gene expression in the two-spotted spider mite, Tetranychus urticae (T. urticae) using engineered dsRNA designed to modulate the host RNAi pathway and increase RNAi efficacy. Analysis of Dicer (Dcr) generated fragments revealed how exogenous RNAs access the host RNAi pathway in this animal, opening avenues for designing RNAi technology for their control. Further, some organisms …


Alterations Of The Gut Mycobiome In Patients With Ms - A Bioinformatic Approach, Saumya Shah May 2022

Alterations Of The Gut Mycobiome In Patients With Ms - A Bioinformatic Approach, Saumya Shah

Honors Scholar Theses

The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in multiple sclerosis (MS) has not been studied. We performed descriptive and formal statistical tests using the R language to characterize the gut mycobiome in people with MS (pwMS) and healthy controls. We found that the microbiome composition of multiple sclerosis patients is different from healthy people. The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Additionally, Saccharomyces and Aspergillus were over-represented in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial …


Comparative Analyses Of De Novo Transcriptome Assembly Pipelines For Diploid Wheat, Natasha Pavlovikj May 2022

Comparative Analyses Of De Novo Transcriptome Assembly Pipelines For Diploid Wheat, Natasha Pavlovikj

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Gene expression and transcriptome analysis are currently one of the main focuses of research for a great number of scientists. However, the assembly of raw sequence data to obtain a draft transcriptome of an organism is a complex multi-stage process usually composed of pre-processing, assembling, and post-processing. Each of these stages includes multiple steps such as data cleaning, error correction and assembly validation. Different combinations of steps, as well as different computational methods for the same step, generate transcriptome assemblies with different accuracy. Thus, using a combination that generates more accurate assemblies is crucial for any novel biological discoveries. Implementing …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …