Open Access. Powered by Scholars. Published by Universities.®

Computational Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability

Series

Computational biology

Articles 1 - 3 of 3

Full-Text Articles in Computational Biology

Incorporating Pathway Information Into Feature Selection Towards Better Performed Gene Signatures, Suyan Tian, Chi Wang, Bing Wang Apr 2019

Incorporating Pathway Information Into Feature Selection Towards Better Performed Gene Signatures, Suyan Tian, Chi Wang, Bing Wang

Biostatistics Faculty Publications

To analyze gene expression data with sophisticated grouping structures and to extract hidden patterns from such data, feature selection is of critical importance. It is well known that genes do not function in isolation but rather work together within various metabolic, regulatory, and signaling pathways. If the biological knowledge contained within these pathways is taken into account, the resulting method is a pathway-based algorithm. Studies have demonstrated that a pathway-based method usually outperforms its gene-based counterpart in which no biological knowledge is considered. In this article, a pathway-based feature selection is firstly divided into three major categories, namely, pathway-level selection, …


Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond Feb 2015

Modeling Neurovascular Coupling From Clustered Parameter Sets For Multimodal Eeg-Nirs, M. Tanveer Talukdar, H. Robert Frost, Solomon G. G. Diamond

Dartmouth Scholarship

Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from …


Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota Nov 2005

Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota

Dartmouth Scholarship

The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD …