Open Access. Powered by Scholars. Published by Universities.®

Computational Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Computational Biology

Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang Apr 2018

Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play pivotal roles in various biological processes. Mutations and dysregulations of lncRNAs are implicated in miscellaneous human diseases. Predicting lncRNA–disease associations is beneficial to disease diagnosis as well as treatment. Although many computational methods have been developed, precisely identifying lncRNA–disease associations, especially for novel lncRNAs, remains challenging.

Results: In this study, we propose a method (named SIMCLDA) for predicting potential lncRNA– disease associations based on inductive matrix completion. We compute Gaussian interaction profile kernel of lncRNAs from known lncRNA–disease interactions and functional similarity of diseases based on disease–gene and gene–gene onotology …


An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker Jan 2018

An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker

Computer Science Faculty Publications

Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2-4 Å resolutions. The results show that the normalized probability density function of block …


Weighted Scores Method For Regression Models With Dependent Data, Aristidis K. Nikoloulopoulos, Harry Joe, N. Rao Chaganty Jan 2011

Weighted Scores Method For Regression Models With Dependent Data, Aristidis K. Nikoloulopoulos, Harry Joe, N. Rao Chaganty

Mathematics & Statistics Faculty Publications

There are copula-based statistical models in the literature for regression with dependent data such as clustered and longitudinal overdispersed counts, for which parameter estimation and inference are straightforward. For situations where the main interest is in the regression and other univariate parameters and not the dependence, we propose a "weighted scores method", which is based on weighting score functions of the univariate margins. The weight matrices are obtained initially fitting a discretized multivariate normal distribution, which admits a wide range of dependence. The general methodology is applied to negative binomial regression models. Asymptotic and small-sample efficiency calculations show that our …


Computational Network Analysis Of The Anatomical And Genetic Organizations In The Mouse Brain, Shuiwang Ji Jan 2011

Computational Network Analysis Of The Anatomical And Genetic Organizations In The Mouse Brain, Shuiwang Ji

Computer Science Faculty Publications

Motivation: The mammalian central nervous system (CNS) generates high-level behavior and cognitive functions. Elucidating the anatomical and genetic organizations in the CNS is a key step toward understanding the functional brain circuitry. The CNS contains an enormous number of cell types, each with unique gene expression patterns. Therefore, it is of central importance to capture the spatial expression patterns in the brain. Currently, genome-wide atlas of spatial expression patterns in the mouse brain has been made available, and the data are in the form of aligned 3D data arrays. The sheer volume and complexity of these data pose significant challenges …