Open Access. Powered by Scholars. Published by Universities.®

Computational Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Computational Biology

Phenotypic Robustness And The Assortativity Signature Of Human Transcription Factor Networks, Dov A. Pechenick, Joshua L. Payne, Jason H. Moore Aug 2014

Phenotypic Robustness And The Assortativity Signature Of Human Transcription Factor Networks, Dov A. Pechenick, Joshua L. Payne, Jason H. Moore

Dartmouth Scholarship

Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs - such as their degree distribution - with the robustness of a TFN's gene expression phenotype to genetic and environmental …


Characterizing Populations Of Non-Coding Rnas In Karenia Brevis At Different Times Of The Diel Cycle, Scott Boyd Anglin Aug 2014

Characterizing Populations Of Non-Coding Rnas In Karenia Brevis At Different Times Of The Diel Cycle, Scott Boyd Anglin

Master's Theses

Karenia brevis is a mixotrophic, marine dinoflagellate found in the Gulf of Mexico that generates periodic, if not annual, harmful algal blooms (also known as “red tides”) in certain coastal areas. In an effort to better understand the biology of this organism, a functional genomics project has been initiated. As part of that project, it has been determined that a significant number of natural antisense transcripts (NATs) as well as double-stranded RNA (dsRNA) molecules exist within the transcriptome of K. brevis. I hypothesize that the non-coding NATs, similar to microRNAs (miRNAs) in other organisms play a role in regulating …


Genomic Characterization Of Polyps In Familial Adenomatous Polyposis Patients And Identification Of Candidate Chemopreventive Drugs, Francis A. San Lucas Aug 2014

Genomic Characterization Of Polyps In Familial Adenomatous Polyposis Patients And Identification Of Candidate Chemopreventive Drugs, Francis A. San Lucas

Dissertations & Theses (Open Access)

Familial adenomatous polyposis (FAP) is an autosomal dominant disease characterized by APC germline mutations and the development of hundreds to thousands of premalignant adenomas in the gastrointestinal tract at a young age. If left untreated, these patients inevitably develop colon cancer (CRC) and small bowel tumors. We performed exome sequencing of samples from 12 FAP patients to characterize adenomas and to identify candidate genes of adenoma development that may serve as potential targets for chemoprevention drug development. From each patient, a blood and at least one polyp were sequenced with a total of 25 polyps analyzed. In some cases, normal …


Collective Behaviour Without Collective Order In Wild Swarms Of Midges, Alessandro Attanasi, Andrea Cavagna, Lorenzo Del Castello, Irene Giardina, Stefania Melillo, Leonardo Parisi, Oliver Pohl, Bruno Rossaro, Edward Shen, Edmondo Silvestri, Massimilano Viale Jul 2014

Collective Behaviour Without Collective Order In Wild Swarms Of Midges, Alessandro Attanasi, Andrea Cavagna, Lorenzo Del Castello, Irene Giardina, Stefania Melillo, Leonardo Parisi, Oliver Pohl, Bruno Rossaro, Edward Shen, Edmondo Silvestri, Massimilano Viale

Publications and Research

Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, …


Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko May 2014

Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko

Seton Hall University Dissertations and Theses (ETDs)

The sea lamprey (Petromyzon marinus) has survived throughout evolution for hundreds of millions of years. It is considered an invasive species to the Great Lakes that has caused dramatic changes in the ecosystem for fish communities resulting in the collapse of a fishing industry that was previously valued at billions of dollars. Successful management of the sea lamprey is essential to a sustainable fishing industry and biodiversity. Therefore sea lamprey embryos were studied at various stages of development by growing them in a simulated habitat. RNAs from adult female ovaries and embryos at different time points during embryogenesis …


R-Fap: Rapid Functional Annotation Of Prokaryotes Using Taxon-Specific Pan-Genomes And 10-Mer Peptides, Jordan Matthew Utley May 2014

R-Fap: Rapid Functional Annotation Of Prokaryotes Using Taxon-Specific Pan-Genomes And 10-Mer Peptides, Jordan Matthew Utley

Masters Theses

The growing implementation of next-generation sequencing technologies presents numerous fields with the opportunity to identify bacteria in near real-time. Fields such as counter-terrorism, forensics, medicine, and even microbial ecology are positioned to benefit from such advances and implementation. However, with the ability to rapidly produce high-quality sequence data comes the need to interpret this data as quickly as it is produced. While gene prediction algorithms have kept pace, functional prediction methods have not.

To bypass the need for large-scale queries to multiple databases for each newly-sequenced genome, the project detailed herein seeks to identify the genes shared within a taxonomic …


P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir May 2014

P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir

Dissertations & Theses (Open Access)

p53 MAINTAINS HEPATIC CELL IDENTITY DURING LIVER REGENERATION

Zeynep Hande Coban Akdemir, B.S.,M.A.

Advisory Professor: Michelle Craig Barton, Ph.D.

p53 is a tumor suppressor that has been well studied in tumor-derived, cultured cells. However, its functions in normal proliferating cells and tissues are generally overlooked. We propose that p53 functions during the G1-S transition can be studied in normal, differentiated cells during surgery-induced liver regeneration. Two-thirds partial hepatectomy (PH) of mouse liver offers a unique model to compare p53 functions in regenerating versus sham (control) cells. My hypothesis is that intersection of global expression analyses (microarray and RNA sequencing) and …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …


Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii Jan 2014

Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during embryogenesis that results in the deletion of ~0.5 Gb of germline DNA from the somatic lineage. The underlying mechanism of these rearrangements remains largely unknown. miRNAs (microRNAs) and piRNAs (PIWI interacting RNAs) are two classes of small noncoding RNAs that play important roles in early vertebrate development, including differentiation of cell lineages, modulation of signaling pathways, and clearing of maternal transcripts. Here, I utilized next generation sequencing to determine the temporal expression of miRNAs, piRNAs, and other small noncoding RNAs during the first five days of lamprey …


Epistasis In Predator-Prey Relationships, Iuliia Inozemtseva Jan 2014

Epistasis In Predator-Prey Relationships, Iuliia Inozemtseva

Electronic Theses and Dissertations

Epistasis is the interaction between two or more genes to control a single phenotype. We model epistasis of the prey in a two-locus two-allele problem in a basic predator- prey relationship. The resulting model allows us to examine both population sizes as well as genotypic and phenotypic frequencies. In the context of several numerical examples, we show that if epistasis results in an undesirable or desirable phenotype in the prey by making the particular genotype more or less susceptible to the predator or dangerous to the predator, elimination of undesirable phenotypes and then genotypes occurs.