Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Washington University in St. Louis

Discipline
Keyword
Publication

Articles 1 - 28 of 28

Full-Text Articles in Genetics and Genomics

Quantifying Components Of Protein Translation And Metabolite Heterogeneity In Isogenic Microbial Populations, Alexander Schmitz Dec 2021

Quantifying Components Of Protein Translation And Metabolite Heterogeneity In Isogenic Microbial Populations, Alexander Schmitz

McKelvey School of Engineering Theses & Dissertations

Cell-to-cell variation in gene expression and metabolite levels have a significant impact on ensemble productivity of microbial bioproduction. New metabolic engineering tools and approaches are needed that consider cell cultures as an amalgam of uniquely behaving individuals to improve the slow commercialization of metabolically engineered systems. Stochastic cellular process including gene expression, metabolism, and growth lead to phenotypic variation between genetically identical cells. Understanding and the ability to control microbial phenotypic variation is key to improving microbial bioproduction metrics. During protein translation, codon usage strongly influences ensemble gene expression but the effect on the variation of gene expression was not …


Developments In Proteomics, Trans-Splicing Technology And Endogenous Transcript Manipulation, Justin Alexander Melendez Dec 2021

Developments In Proteomics, Trans-Splicing Technology And Endogenous Transcript Manipulation, Justin Alexander Melendez

Arts & Sciences Electronic Theses and Dissertations

Technological innovation drives scientific discovery, unlocks new avenues of research, and allows us to ask questions in ways that were previously unavailable. With each technological advance, our ability to perturb and explore biological systems has grown in ways previously unimagined. The theme of my thesis is the development of new technologies in biology. To this end, I have worked on three technologies that contribute to the areas of protein sequencing, RNA barcoding for trans-splicing and single-cell applications, and a new method for transcriptional knockdown.

In my first project, digital analysis of proteins by end sequencing (DAPES), we set out to …


Deconvolving Genomic Regulatory Heterogeneity With Self-Reporting Transposons, Arnav Moudgil Dec 2021

Deconvolving Genomic Regulatory Heterogeneity With Self-Reporting Transposons, Arnav Moudgil

Arts & Sciences Electronic Theses and Dissertations

A cell’s identity is a function of the genes expressed in that cell, which are in turn regulated by transcription factors. Over the last decade, single-cell RNA sequencing (RNA-seq) has emerged as a powerful class of techniques to characterize cellular diversity in heterogeneous tissues. These methods barcode transcripts by their cell-of-origin and assign them to specific genes. The resulting high-dimensional data are further processed to reveal clusters of cells sharing transcriptional states. Annotating these clusters, based on either known or discovered marker genes, offers a glimpse into the dynamic composition of an organ or biological process. While single-cell RNA-seq excels …


Structural Variants Are A Major Source Of Gene Expression Differences In Humans And Often Affect Multiple Nearby Genes, Alexandra Jane Scott Dec 2021

Structural Variants Are A Major Source Of Gene Expression Differences In Humans And Often Affect Multiple Nearby Genes, Alexandra Jane Scott

Arts & Sciences Electronic Theses and Dissertations

Structural variants (SVs), including copy number variants (CNVs), balanced rearrangements, and mobile element insertions (MEIs), are an important source of diversity in the human genome but their functional effects are not well understood. SVs are technically difficult to detect and genotype1, and mapping is dependent on deep whole genome sequencing (WGS) which was, until recently, unaffordable for large cohorts. For these reasons SVs are not included in most genome-wide studies of functional variants, despite the fact that SVs are known causal agents in multiple clinical disorders2-16. However, recent advancements in high-throughput sequencing technologies that allow for widespread use of WGS, …


Deep Multi-Omics Investigations Elucidate Novel Oncogenesis Paradigms, Therapeutic Targets, And Mechanisms Of Treatment Resistance In Cancer, Daniel Cui Zhou Dec 2021

Deep Multi-Omics Investigations Elucidate Novel Oncogenesis Paradigms, Therapeutic Targets, And Mechanisms Of Treatment Resistance In Cancer, Daniel Cui Zhou

Arts & Sciences Electronic Theses and Dissertations

No abstract provided.


Human Plcg2 Haploinsufficiency Results In A Novel Immunodeficiency, Joshua Brandon Alinger Dec 2021

Human Plcg2 Haploinsufficiency Results In A Novel Immunodeficiency, Joshua Brandon Alinger

Arts & Sciences Electronic Theses and Dissertations

NK cells are critical for the recognition and lysis of herpesvirus-infected cells. Patients with NK cell immunodeficiency may suffer from unusually severe and/or recurrent herpesvirus infections; however, the genetic cause is frequently unknown. PLCG2 encodes a signaling protein in NK cell and B cell receptor signaling, in which dominant-negative or gain-of-function mutations may cause cold urticaria, antibody deficiency, or autoinflammation. However, loss-of-function mutations and PLCG2 haploinsufficiency have never been reported in human disease. We examined 2 families with autosomal dominant NK cell immunodeficiency with dual high-dimensional techniques, mass cytometry and whole-exome sequencing, to identify the cause of disease. We identified …


Quantitative Characterization Of Microbial Ecologies In Dysbiosis And Infection, Eric Keen Dec 2021

Quantitative Characterization Of Microbial Ecologies In Dysbiosis And Infection, Eric Keen

Arts & Sciences Electronic Theses and Dissertations

In 1973, Theodosius Dobzhansky famously wrote that nothing in biology makes sense except in the light of evolution. Today, nearly 50 years later, little in microbiology – or in biology, for that matter – makes sense except in the light of genomics. Microbial genomics populates the field with innumerable testable hypotheses for evaluation in vitro and in vivo, allows us to monitor microbial populations in real time and at a massive scale, and underpins our approach to entire domains of microbiology, including microbial evolution. In this Thesis, I present three studies from my graduate research united by their common theme …


Weedy Rice As A Model System For The Study Of Microevolutionary Interactions In Agricultural Contexts, Marshall Jon Wedger Dec 2021

Weedy Rice As A Model System For The Study Of Microevolutionary Interactions In Agricultural Contexts, Marshall Jon Wedger

Arts & Sciences Electronic Theses and Dissertations

Just under one-half of the global population relies on cultivated rice (Oryza sativa) astheir primary source of calories, making the optimization of rice agriculture immensely important. One of the primary constraints to rice agriculture is the de-domesticated (feral) form of rice known as ‘weedy rice’ that aggressively competes for space, soil nutrients, and light. Heavy infestation can reduce crop yields by as much as 80%. As a closely-related weedy descendant of cultivated rice, chemical control is difficult in rice fields, and physical weeding is labor intensive, time consuming, and largely ineffective due to early life-stage mimicry of the crop.

Weedy …


Cancer Epigenome Reprogramming, Jennifer Ann Karlow Dec 2021

Cancer Epigenome Reprogramming, Jennifer Ann Karlow

Arts & Sciences Electronic Theses and Dissertations

The identification of recurrent genetic mutations in cancer and their functionalcharacterization has provided a strong foundation for our understanding of tumorigenesis. The more recent observation of recurrent and specific epigenetic changes also present in cancer has widened this view, now establishing cancer as a disease of both genetic and epigenetic misregulation. Enhancers, genomic regions primarily responsible for tissue-specific gene expression, have been shown to be frequent targets of both genetic and epigenetic abnormalities. The observation that DNA methylation within regulatory regions has traditionally correlated with reduced gene expression, coupled with the known role of enhancers in regulating tissuespecific gene expression, …


C. Elegans Response To Cadmium Toxicity, Brian James Earley Aug 2021

C. Elegans Response To Cadmium Toxicity, Brian James Earley

Arts & Sciences Electronic Theses and Dissertations

Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. Residing in the same group of the periodic table, cadmium and zinc share chemical characteristics that are important for their industrial uses in electroplating, batteries, pigments, and metal alloys. The similarities of ionic cadmium and zinc have significant repercussions on biological systems. While it has long been clear that cadmium is toxic to biological systems, the mechanisms of cadmium toxicity remain poorly understood. In contrast, mechanisms of zinc homeostasis have been elucidated in growing detail. In C. elegans high zinc homeostasis is regulated …


Association Of Structural Variation (Sv) With Cardiometabolic Traits In Finns, Lei Chen Aug 2021

Association Of Structural Variation (Sv) With Cardiometabolic Traits In Finns, Lei Chen

Arts & Sciences Electronic Theses and Dissertations

Cardiovascular diseases (CVDs) are known to be associated with a variety of quantitative risk factors such as cholesterol, metabolites, and insulin. Understanding the genetic basis of these quantitative traits can shed light on the etiology, prevention, diagnosis, and treatment of disease. However most prior trait-mapping studies have focused on single nucleotide variants (SNVs) and Indels, with the contribution of structural variation (SV) remaining unknown. In this thesis, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. In the first chapter, we used sensitive methods to identify and genotype 129,166 high-confidence …


Regulation Of Transcription Factor Binding Specificity: From Binding Motifs To Local Dna Context, Jiayue Liu Aug 2021

Regulation Of Transcription Factor Binding Specificity: From Binding Motifs To Local Dna Context, Jiayue Liu

Arts & Sciences Electronic Theses and Dissertations

Regulation of transcription factor (TF) binding specificity lies at the heart of transcriptional control which governs how cells divide, differentiate, and respond to their environments. TFs are known to bind to DNA in a sequence specific manner, and such short sequence is known as transcription factor binding site (TFBS). However, the in vivo TF bound regions do not always contain a TFBS, and additionally, there are often excessive non-functional TFBSs with binding potential in the regulatory regions that are unbound for a given TF. This dissertation focuses on understanding the principles of TF binding specificity and is divided into two …


Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda Aug 2021

Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda

Arts & Sciences Electronic Theses and Dissertations

Pancreatic β-cells perform glucose-stimulated insulin secretion, a process required to maintain systemic glucose homeostasis. Obesity promotes glycemic and inflammatory stress, causing β-cell death and dysfunction, resulting in diabetes. Efforts to improve β-cell function in obesity have been hampered by observations that β-cells are highly heterogeneous, varying in morphology, function, and gene expression. There is great need to understand the breadth of β-cell heterogeneity in health and obesity to improve diabetic therapies.High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we show that as they resolve hyperglycemia, obese SM/J …


The Origins & Functional Effects Of Postzygotic Mutations Throughout The Human Lifespan, Nicole Briana Rockweiler Aug 2021

The Origins & Functional Effects Of Postzygotic Mutations Throughout The Human Lifespan, Nicole Briana Rockweiler

Arts & Sciences Electronic Theses and Dissertations

Mosaicism is pervasive in humans and yet we understand little of its causes and functional consequences across the lifespan. To help solve these mysteries, we developed a suite of tools, called Lachesis, to analyze postzygotic mutations (PZMs). LachesisDetect is a novel and accurate method to detect PZMs with VAFs as low as 0.04% from bulk RNA-seq samples. LachesisMap is an innovative supervised method to reconstruct postzygotic mutation phylogenies from putative prenatal PZMs. We applied Lachesis to 17,382 samples derived from 948 donors across 54 diverse tissues and cell types from the NIH’s Genotype-Tissue Expression (GTEx) project to produce the most …


Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell Aug 2021

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell

Arts & Sciences Electronic Theses and Dissertations

The tumor suppressor TP53 (p53) is the most frequently mutated gene in cancer and among the most mutated genes in brain cancer. Functionally, p53 is a transcription factor that, when activated by an array of stress stimuli, regulates a complex transcriptional program that contributes to a variety of antiproliferative pathways. The loss of p53 function (LOF), either through mutation, deletion, or inhibition by alterations in the proteins that regulate p53, removes an essential barrier to the unfettered proliferation and genomic instability that drive transformation. Unlike most tumor suppressors, many p53 mutations are missense mutations that lead to stable expression of …


Disentangling Glial Diversity In Peripheral Nerves At Single Nuclei Resolution, Aldrin Kay Yuen Yim Aug 2021

Disentangling Glial Diversity In Peripheral Nerves At Single Nuclei Resolution, Aldrin Kay Yuen Yim

Arts & Sciences Electronic Theses and Dissertations

The ability to discern gene expression at single cell level is revolutionizing our understanding of both basic biology and human health. Peripheral nerves are essential communicators between the outside world and the CNS, as evidenced by the devastating effects of diseases that disrupt them, such as ALS, Charcot-Marie-Tooth Syndrome and diabetic neuropathy. Understanding peripheral nerve dysfunction at a mechanistic level is of considerable interest due to the increasing prevalence and associated patient care costs of these disorders. Although most research of the peripheral nerve has focused on glial-axonal interactions, the important contributions of other cell types besides Schwann cells, such …


Gut Reactions: Quantitative Predictions Of The Responses Of Human Gut Microbiota To Medical Interventions, Amy Elizabeth Langdon May 2021

Gut Reactions: Quantitative Predictions Of The Responses Of Human Gut Microbiota To Medical Interventions, Amy Elizabeth Langdon

Arts & Sciences Electronic Theses and Dissertations

The collection of microbes known as the human microbiome perform vital functions for their host, and when this community becomes unhealthy, its dysbiosis is implicated in a myriad of diseases. The gut microbiota in particular are known to suppress colonization of opportunistic pathogens, regulate the immune system, aid in nutrient breakdown, produce vitamins, and a growing number of other functions. In order to intervene in a dysbiotic microbial ecology, we can try to remove unwanted microbes or try to recolonize the gut with microbes expected to be beneficial. This dissertation provides an overview of the state of medical interventions for …


The Genetic Basis Of Adaptation To Environmental Stress In Two Grass Genomic Model Systems, David Mitchell Goad May 2021

The Genetic Basis Of Adaptation To Environmental Stress In Two Grass Genomic Model Systems, David Mitchell Goad

Arts & Sciences Electronic Theses and Dissertations

Plants are exposed to a wide variety of environmental stress in the wild and have developed an equally diverse set of adaptations to tolerate them. The evolutionary processes that have led to this functional diversification, and the specific genes and physiological mechanisms involved, are of immense interest to both evolutionary biologists and crop breeders. In this dissertation I investigate adaptation to different types of environmental stress in two economically important grass species, seashore paspalum (Paspalum vaginatum Sw.) and rice (Oryza sativa L.).

Seashore paspalum is a halophytic turfgrass that occupies habitats which can dramatically differ in salt concentration. Populations may …


Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo May 2021

Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo

Arts & Sciences Electronic Theses and Dissertations

End-stage organ failures remain a clinical challenge with an unmet need for medical therapies, with transplantation often being the only curative option. Despite advances in transplantation outcomes, organ shortage continues to limit the availability of cures to patients in need. The direct lineage reprogramming of one cell type to another is a promising avenue for therapy with the following advantages: (1) patient-specific cell sources, (2) direct conversion without reverting to pluripotency and the associated risk of teratoma formation, and (3) utilization of the cell type responsible for fibrotic scar formation for the engineering towards the desired cell fate. Nonetheless, many …


Transcriptional And Epigenetic Regulation Of Cerebellar Development And Function, Shahriyar Majidi May 2021

Transcriptional And Epigenetic Regulation Of Cerebellar Development And Function, Shahriyar Majidi

Arts & Sciences Electronic Theses and Dissertations

Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes. Despite the prevalence of this phenotypic phenomenon, an in vivo genome-scale understanding of how TFs dynamically respond within the chromatin context to paralog depletion is still lacking. We explore this question in the mammalian brain by studying the highly conserved MEF2 family of TFs, which confer phenotypic robustness for neuronal processes across multiple brain regions. The paralogous TFs MEF2A and MEF2D are strongly co-expressed in granule neurons of the cerebellum, the most abundant neurons in the brain. Employing single and double conditional knockout of MEF2A and MEF2D in …


Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii May 2021

Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii

Arts & Sciences Electronic Theses and Dissertations

Dendritic cells (DCs) are innate immune cells of the myeloid lineage that are specialized at pathogen recognition, cytokine production, and antigen presentation. Their functions and developmental pathways are largely conserved between mice and humans and mice. The DC lineage is composed of two major subsets, known as plasmacytoid DCs (pDCs) and classical DCs (cDCs). Research conducted to date suggests that the function of pDCs, limited to viral antigen recognition and type I interferon production, can be compensated by other immune cell lineages. On the other hand, there is a consensus that diversified subsets cDCs in mice and humans are essential …


Analysis Of Structural Variation And Mtdna Copy Number In Finns, Liron Ganel May 2021

Analysis Of Structural Variation And Mtdna Copy Number In Finns, Liron Ganel

Arts & Sciences Electronic Theses and Dissertations

Cardiovascular disease (CVD) is a complex disease responsible for more deaths worldwide than any other cause according to the World Health Organization. Genetic association studies for CVD and related risk factors have successfully identified hundreds of loci associated with these complex diseases and traits, although much of their heritability remains unexplained. Structural variants (SVs) - including insertions, deletions, duplications, and inversions - are an understudied class of genomic variation that have the potential to explain much of the missing heritability of CVD and other complex traits. Here, we discuss advances emerging from the study of SVs in the context of …


Regulation Of Genome Architecture By Chromatin Remodeling In The Brain, Jared Vega Goodman May 2021

Regulation Of Genome Architecture By Chromatin Remodeling In The Brain, Jared Vega Goodman

Arts & Sciences Electronic Theses and Dissertations

Brain development requires exquisite control of gene expression to establish and refine the proper circuitry of the nervous system. Gene expression control is under the purview of several cellular processes, including chromatin regulation in the form of DNA modification, histone modification, and nucleosome remodeling. Chromatin remodeling enzymes are the major effectors of nucleosome remodeling. These enzymes are clearly involved in brain development – mutations in chromatin remodeling enzymes are likely causative for neurodevelopmental disorders of cognition. Chromatin remodeling enzymes have discrete molecular functions and binding profiles and similarly control distinct phases of nervous system maturation. Chd4 is a Chd family …


The Role Of Subclonal Gene Mutations During Progression From Myelodysplastic Syndrome To Secondary Acute Myeloid Leukemia, Andrew John Menssen May 2021

The Role Of Subclonal Gene Mutations During Progression From Myelodysplastic Syndrome To Secondary Acute Myeloid Leukemia, Andrew John Menssen

Arts & Sciences Electronic Theses and Dissertations

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis. Approximately 30% of MDS patients progress to secondary acute myeloid leukemia (AML). MDS is caused by somatic mutations in hematopoietic stem/progenitor cells and progression to secondary AML is associated with the acquisition and/or expansion of at least one subclone. We hypothesized that specific gene mutations would be enriched in subclones compared to founding clones, and that the order of mutation acquisition would be critical for clonal evolution and progression from MDS to secondary AML. Sequencing of paired MDS and secondary AML samples from 44 …


The Phylogeography Of Rare Central Tennessee Glade Endemics Trifolium Calcaricum And Viola Egglestonii, Rachel Ann Lyman May 2021

The Phylogeography Of Rare Central Tennessee Glade Endemics Trifolium Calcaricum And Viola Egglestonii, Rachel Ann Lyman

Arts & Sciences Electronic Theses and Dissertations

Endemic species are range-restricted to a particular type of habitat and generally occur in a few small populations. Often endemic species are threatened or endangered due to their geographic isolation and limited habitat breadth. Despite the fact that understanding factors that may have shaped the evolutionary history of a species with a narrow distribution can provide important insights for their management and conservation, little is known about the historical forces that gave rise to many endemic species. Endemic species can arise because of factors such as variation in climate, geographic barriers, and habitat specificity, or the combination of several of …


Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez May 2021

Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez

Arts & Sciences Electronic Theses and Dissertations

Follicular lymphoma (FL) is the most common indolent non-Hodgkin’s lymphoma; however, it remains incurable with conventional therapies and is poorly responsive to checkpoint blockade. FL arises from B-lymphocytes and develops slowly (and often asymptomatically). A major research focus has been on how to avoid chemotherapy treatments, to limit the potential development of treatment-related side effects, and the risk of therapy-related second cancers. FL also carries an approximately 30% lifetime risk of transforming from an iNHL to more destructive lymphomas, which are associated with poorer prognosis. The most common transformation results in diffuse large B-cell lymphoma (DLBCL). However, many patients may …


Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh Jan 2021

Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh

Arts & Sciences Electronic Theses and Dissertations

Protein conformational landscapes contain much of the functionally relevant information that is useful for understanding biological processes at the chemical scale. Understanding and mapping out these conformational landscapescan provide valuable insight into protein behaviors and biological phenomena, and has relevance to the process of therapeutic design.

While structural biology methods have been transformative in studying protein dynamics, they are limited by technicallimitations and have inherent resolution limits. Molecular dynamics (MD) simulations are a powerful tool for exploring conformational landscapes, and provide atomic-scale information that is useful in understanding protein behaviors. With recent advances in generating datasets of large timescale simulations …


Genetics Of Pediatric Musculoskeletal Disorders, Lilian Antunes Jan 2021

Genetics Of Pediatric Musculoskeletal Disorders, Lilian Antunes

Arts & Sciences Electronic Theses and Dissertations

Pediatric musculoskeletal disorders are an extremely broad category of diseases that are often inherited. While individually rare, collectively these disorders are common, affecting around 3% of live births in the US. Despite the mounting clinical and molecular evidence for a genetic etiology, the cause for many patients with pediatric musculoskeletal disorders remain largely unknown. Major challenges in rare pediatric diseases include recruiting large numbers of patients and determining the significance and functional impacts of variants associated with disease within individuals or families. Whole exome sequencing (WES) is a powerful tool to identify coding variants that are associated with rare pediatric …