Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Genetics and Genomics

Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Nov 2017

Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Recent studies implicate Poly (ADP-ribose) polymerase 1 (PARP1) in alternative splicing regulation, and PARP1 may be an RNA-binding protein. However, detailed knowledge of RNA targets and the RNA-binding region for PARP1 are unknown. Here we report the first global study of PARP1–RNA interactions using PAR–CLIP in HeLa cells. We identified a largely overlapping set of 22 142 PARP1–RNA-binding peaks mapping to mRNAs, with 20 484 sites located in intronic regions. PARP1 preferentially bound RNA containing GC-rich sequences. Using a Bayesian model, we determined positional effects of PARP1 on regulated exon-skipping events: PARP1 binding upstream and downstream of the skipped exons …


Mechanism Of Transcription Anti-Termination In Human Mitochondria., Hauke S Hillen, Andrey V Parshin, Karen Agaronyan, Yaroslav I Morozov, James J Graber, Aleksandar Chernev, Kathrin Schwinghammer, Henning Urlaub, Michael Anikin, Patrick Cramer, Dmitry Temiakov Nov 2017

Mechanism Of Transcription Anti-Termination In Human Mitochondria., Hauke S Hillen, Andrey V Parshin, Karen Agaronyan, Yaroslav I Morozov, James J Graber, Aleksandar Chernev, Kathrin Schwinghammer, Henning Urlaub, Michael Anikin, Patrick Cramer, Dmitry Temiakov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. …


Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud May 2017

Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud

Chancellor’s Honors Program Projects

No abstract provided.


Zhx2 (Zinc Fingers And Homeoboxes 2) Regulates Major Urinary Protein Gene Expression In The Mouse Liver, Jieyun Jiang, Kate Townsend Creasy, Justin Purnell, Martha L. Peterson, Brett T. Spear Mar 2017

Zhx2 (Zinc Fingers And Homeoboxes 2) Regulates Major Urinary Protein Gene Expression In The Mouse Liver, Jieyun Jiang, Kate Townsend Creasy, Justin Purnell, Martha L. Peterson, Brett T. Spear

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as …


Inferring Condition-Specific Targets Of Human Tf-Tf Complexes Using Chip-Seq Data, Chia-Chun Yang, Min-Hsuan Chen, Sheng-Yi Lin, Erik H. Andrews, Chao Cheng, Jeremy J.W Chen Jan 2017

Inferring Condition-Specific Targets Of Human Tf-Tf Complexes Using Chip-Seq Data, Chia-Chun Yang, Min-Hsuan Chen, Sheng-Yi Lin, Erik H. Andrews, Chao Cheng, Jeremy J.W Chen

Dartmouth Scholarship

Background:

Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and regulate gene expression. Many databases are created to describe known TF complexes identified by either mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under different experiment conditions are available, making it possible to investigate condition-specific (cell type and/or physiologic state) TF complexes and their target genes.

Results:

Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes (called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted …


Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll Jan 2017

Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll

Legacy Theses & Dissertations (2009 - 2024)

The Mediator complex plays a central, highly conserved role in eukaryotic transcription by RNA Polymerase II (Pol II) by stimulating the cooperative assembly of a pre-initiation complex (PIC) and recruitment of Pol II for gene activation. Mediator recruitment has generally been ascribed to sequence-specific activators engaging subunits from the tail module which in turn function to recruit the middle and head for complete assembly at the UAS. Mediator subunits of the middle and head then bridge the enhancer to connect with the PIC at the core promoter. It is reported that Mediator recruitment at the UAS preferentially occurs at SAGA-dependent, …


The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero Jan 2017

The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero

Legacy Theses & Dissertations (2009 - 2024)

Retrotransposons are mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. Saccharomyces cerevisiae has been invaluable to retrotransposon research due to the presence of an active retroelement known as Ty1. The mobility of Ty1 is regulated both positively and negatively by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. The Mediator core complex is organized into genetically and structurally defined head, middle, and tail modules, along with a transiently associated kinase module. We show that with the exception of the kinase module, deletion of non-essential subunits from …