Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Sean P. Ryder

2015

Humans

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder Sep 2015

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder

Sean P. Ryder

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside …


Quaking Regulates Hnrnpa1 Expression Through Its 3' Utr In Oligodendrocyte Precursor Cells, Nancy Zearfoss, Carina Clingman, Brian Farley, Lisa Mccoig, Sean Ryder May 2015

Quaking Regulates Hnrnpa1 Expression Through Its 3' Utr In Oligodendrocyte Precursor Cells, Nancy Zearfoss, Carina Clingman, Brian Farley, Lisa Mccoig, Sean Ryder

Sean P. Ryder

In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3' UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, …