Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genetics and Genomics

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Plasma-Activated Air Mediates Plasmid Dna Delivery In Vivo, Chelsea M. Edelblute, Loree C. Heller, Muhammad A. Malik, Anna Bulysheva, Richard Heller Jan 2016

Plasma-Activated Air Mediates Plasmid Dna Delivery In Vivo, Chelsea M. Edelblute, Loree C. Heller, Muhammad A. Malik, Anna Bulysheva, Richard Heller

Bioelectrics Publications

Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets.


Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola Oct 2002

Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola

Bioelectrics Publications

In vivo electroporation is an efficient means of increasing plasmid DNA delivery to normal tissues, such as skin and muscle, as well as directly to tumors. In the experiments described here, plasmid DNA was delivered by in vivo electroporation to B16 mouse melanomas using two very different pulsing protocols. Reporter expression increased 21- or 42-fold, respectively with electroporation over injection alone. The growth of experimental melanomas with an approximate diameter of 4 mm on the day of treatment was monitored after electroporation delivery of reporter plasmid DNA. Remarkably, short-term complete regressions using one of these pulsing protocols occurred in up …


Il-12 Plasmid Delivery By In Vivo Electroporation For The Successful Treatment Of Established Subcutaneous B16.F10 Melanoma, M. Lee Lucus, Loree Heller, Domenico Coppola, Richard Heller Jan 2002

Il-12 Plasmid Delivery By In Vivo Electroporation For The Successful Treatment Of Established Subcutaneous B16.F10 Melanoma, M. Lee Lucus, Loree Heller, Domenico Coppola, Richard Heller

Bioelectrics Publications

Interleukin-12 (IL-12) has been used in numerous immunotherapy protocols against melanoma. However, delivery of IL-12 in the form of recombinant protein can result in severe toxicity, and gene therapy has had limited success against B16.F10 murine melanoma. The purpose of this study was to examine the effectiveness of in vivo electroporation for the delivery of plasmid DNA encoding IL-12 as an antitumor agent against B16.F10 melanoma. We treated mice bearing established B16.F10 melanoma tumors with intratumoral (i.t.) or intramuscular (i.m.) injections of a plasmid encoding IL-12, followed by in vivo electroporation. For i.t. treatments, we used an applicator containing six …