Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Genetics and Genomics

Recta: Regulon Identification Based On Comparative Genomics And Transcriptomics Analysis, Xin Chen, Anjun Ma, Adam Mcdermaid, Hanyuan Zhang, Chao Liu, Huansheng Cao, Qin Ma May 2018

Recta: Regulon Identification Based On Comparative Genomics And Transcriptomics Analysis, Xin Chen, Anjun Ma, Adam Mcdermaid, Hanyuan Zhang, Chao Liu, Huansheng Cao, Qin Ma

School of Computing: Faculty Publications

Regulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, regulon identification based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to …


A Systematic Approach To Rna-Associated Motif Discovery, Tian Gao, Jiang Shu, Juan Cui Jan 2018

A Systematic Approach To Rna-Associated Motif Discovery, Tian Gao, Jiang Shu, Juan Cui

School of Computing: Faculty Publications

Background: Sequencing-based large screening of RNA-protein and RNA-RNA interactions has enabled the mechanistic study of post-transcriptional RNA processing and sorting, including exosome-mediated RNA secretion. The downstream analysis of RNA binding sites has encouraged the investigation of novel sequence motifs, which resulted in exceptional new challenges for identifying motifs from very short sequences (e.g., small non-coding RNAs or truncated messenger RNAs), where conventional methods tend to be ineffective. To address these challenges, we propose a novel motif-finding method and validate it on a wide range of RNA applications.

Results: We first perform motif analysis on microRNAs and longer RNA fragments from …


Testing The Independence Hypothesis Of Accepted Mutations For Pairs Of Adjacent Amino Acids In Protein Sequences, Jyotsna Ramanan, Peter Revesz Jul 2017

Testing The Independence Hypothesis Of Accepted Mutations For Pairs Of Adjacent Amino Acids In Protein Sequences, Jyotsna Ramanan, Peter Revesz

School of Computing: Faculty Publications

Evolutionary studies usually assume that the genetic mutations are independent of each other. However, that does not imply that the observed mutations are independent of each other because it is possible that when a nucleotide is mutated, then it may be biologically beneficial if an adjacent nucleotide mutates too. With a number of decoded genes currently available in various genome libraries and online databases, it is now possible to have a large-scale computer-based study to test whether the independence assumption holds for pairs of adjacent amino acids. Hence the independence question also arises for pairs of adjacent amino acids within …


Incremental Phylogenetics By Repeated Insertions: An Evolutionary Tree Algorithm, Peter Revesz, Zhiqiang Li Aug 2016

Incremental Phylogenetics By Repeated Insertions: An Evolutionary Tree Algorithm, Peter Revesz, Zhiqiang Li

School of Computing: Faculty Publications

We introduce the idea of constructing hypothetical evolutionary trees using an incremental algorithm that inserts species one-by-one into the current evolutionary tree. The method of incremental phylogenetics by repeated insertions lead to an algorithm that can be used on DNA, RNA and amino acid sequences. According to experimental results on both synthetic and biological data, the new algorithm generates more accurate evolutionary trees than the UPGMA and the Neighbor Joining algorithms.


A Mitochondrial Dna-Based Computational Model Of The Spread Of Human Populations, Peter Revesz Mar 2016

A Mitochondrial Dna-Based Computational Model Of The Spread Of Human Populations, Peter Revesz

School of Computing: Faculty Publications

This paper presents a mitochondrial DNA-based computational model of the spread of human populations. The computation model is based on a new measure of the relatedness of two populations that may be both heterogeneous in terms of their set of mtDNA haplogroups. The measure gives an exponentially increasing weight for the similarity of two haplogroups with the number of levels shared in the mtDNA classification tree. In an experiment, the computational model is applied to the study of the relatedness of seven human populations ranging from the Neolithic through the Bronze Age to the present. The human populations included in …