Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

COBRA

2005

Discipline
Keyword
Publication

Articles 1 - 16 of 16

Full-Text Articles in Genetics and Genomics

Bayesian Analysis Of Cell-Cycle Gene Expression Data, Chuan Zhou, Jon Wakefield, Linda Breeden Dec 2005

Bayesian Analysis Of Cell-Cycle Gene Expression Data, Chuan Zhou, Jon Wakefield, Linda Breeden

UW Biostatistics Working Paper Series

The study of the cell-cycle is important in order to aid in our understanding of the basic mechanisms of life, yet progress has been slow due to the complexity of the process and our lack of ability to study it at high resolution. Recent advances in microarray technology have enabled scientists to study the gene expression at the genome-scale with a manageable cost, and there has been an increasing effort to identify cell-cycle regulated genes. In this chapter, we discuss the analysis of cell-cycle gene expression data, focusing on a model-based Bayesian approaches. The majority of the models we describe …


The Role Of An Explicit Causal Framework In Affected Sib Pair Designs With Covariates , Constantine E. Frangakis, Fan Li, Betty Q. Doan Dec 2005

The Role Of An Explicit Causal Framework In Affected Sib Pair Designs With Covariates , Constantine E. Frangakis, Fan Li, Betty Q. Doan

Johns Hopkins University, Dept. of Biostatistics Working Papers

The affected sib/relative pair (ASP/ARP) design is often used with covariates to find genes that can cause a disease in pathways other than through those covariates. However, such "covariates" can themselves have genetic determinants, and the validity of existing methods has so far only been argued under implicit assumptions. We propose an explicit causal formulation of the problem using potential outcomes and principal stratification. The general role of this formulation is to identify and separate the meaning of the different assumptions that can provide valid causal inference in linkage analysis. This separation helps to (a) develop better methods under explicit …


Optimal Feature Selection For Nearest Centroid Classifiers, With Applications To Gene Expression Microarrays, Alan R. Dabney, John D. Storey Nov 2005

Optimal Feature Selection For Nearest Centroid Classifiers, With Applications To Gene Expression Microarrays, Alan R. Dabney, John D. Storey

UW Biostatistics Working Paper Series

Nearest centroid classifiers have recently been successfully employed in high-dimensional applications. A necessary step when building a classifier for high-dimensional data is feature selection. Feature selection is typically carried out by computing univariate statistics for each feature individually, without consideration for how a subset of features performs as a whole. For subsets of a given size, we characterize the optimal choice of features, corresponding to those yielding the smallest misclassification rate. Furthermore, we propose an algorithm for estimating this optimal subset in practice. Finally, we investigate the applicability of shrinkage ideas to nearest centroid classifiers. We use gene-expression microarrays for …


A New Approach To Intensity-Dependent Normalization Of Two-Channel Microarrays, Alan R. Dabney, John D. Storey Nov 2005

A New Approach To Intensity-Dependent Normalization Of Two-Channel Microarrays, Alan R. Dabney, John D. Storey

UW Biostatistics Working Paper Series

A two-channel microarray measures the relative expression levels of thousands of genes from a pair of biological samples. In order to reliably compare gene expression levels between and within arrays, it is necessary to remove systematic errors that distort the biological signal of interest. The standard for accomplishing this is smoothing "MA-plots" to remove intensity-dependent dye bias and array-specific effects. However, MA methods require strong assumptions. We review these assumptions and derive several practical scenarios in which they fail. The "dye-swap" normalization method has been much less frequently used because it requires two arrays per pair of samples. We show …


An Introduction To Low-Level Analysis Methods Of Dna Microarray Data, Wolfgang Huber, Anja Von Heydebreck, Martin Vingron Nov 2005

An Introduction To Low-Level Analysis Methods Of Dna Microarray Data, Wolfgang Huber, Anja Von Heydebreck, Martin Vingron

Bioconductor Project Working Papers

This article gives an overview over the methods used in the low--level analysis of gene expression data generated using DNA microarrays. This type of experiment allows to determine relative levels of nucleic acid abundance in a set of tissues or cell populations for thousands of transcripts or loci simultaneously. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. This includes the design of probes, the experimental design, the image analysis of microarray scanned images, the normalization of fluorescence intensities, the assessment of the quality of microarray …


Feature-Specific Penalized Latent Class Analysis For Genomic Data, E. Andres Houseman, Brent A. Coull, Rebecca A. Betensky Sep 2005

Feature-Specific Penalized Latent Class Analysis For Genomic Data, E. Andres Houseman, Brent A. Coull, Rebecca A. Betensky

Harvard University Biostatistics Working Paper Series

No abstract provided.


A Pseudolikelihood Approach For Simultaneous Analysis Of Array Comparative Genomic Hybridizations (Acgh), David A. Engler, Gayatry Mohapatra, David N. Louis, Rebecca Betensky Sep 2005

A Pseudolikelihood Approach For Simultaneous Analysis Of Array Comparative Genomic Hybridizations (Acgh), David A. Engler, Gayatry Mohapatra, David N. Louis, Rebecca Betensky

Harvard University Biostatistics Working Paper Series

DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based Comparative Genomic Hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and across hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and across hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure, and with random effects to allow for intertumoral variation, as well as intratumoral clonal …


Simultaneous And Exact Interval Estimates For The Contrast Of Two Groups Based On An Extremely High Dimensional Response Variable: Application To Mass Spec Data Analysis, Yuhyun Park, Sean R. Downing, Cheng Li Dr., William C. Hahn, Philip W. Kantoff, L. J. Wei Sep 2005

Simultaneous And Exact Interval Estimates For The Contrast Of Two Groups Based On An Extremely High Dimensional Response Variable: Application To Mass Spec Data Analysis, Yuhyun Park, Sean R. Downing, Cheng Li Dr., William C. Hahn, Philip W. Kantoff, L. J. Wei

Harvard University Biostatistics Working Paper Series

No abstract provided.


The Optimal Discovery Procedure: A New Approach To Simultaneous Significance Testing, John D. Storey Sep 2005

The Optimal Discovery Procedure: A New Approach To Simultaneous Significance Testing, John D. Storey

UW Biostatistics Working Paper Series

Significance testing is one of the main objectives of statistics. The Neyman-Pearson lemma provides a simple rule for optimally testing a single hypothesis when the null and alternative distributions are known. This result has played a major role in the development of significance testing strategies that are used in practice. Most of the work extending single testing strategies to multiple tests has focused on formulating and estimating new types of significance measures, such as the false discovery rate. These methods tend to be based on p-values that are calculated from each test individually, ignoring information from the other tests. As …


The Optimal Discovery Procedure For Large-Scale Significance Testing, With Applications To Comparative Microarray Experiments, John D. Storey, James Y. Dai, Jeffrey T. Leek Sep 2005

The Optimal Discovery Procedure For Large-Scale Significance Testing, With Applications To Comparative Microarray Experiments, John D. Storey, James Y. Dai, Jeffrey T. Leek

UW Biostatistics Working Paper Series

As much of the focus of genetics and molecular biology has shifted toward the systems level, it has become increasingly important to accurately extract biologically relevant signal from thousands of related measurements. The common property among these high-dimensional biological studies is that the measured features have a rich and largely unknown underlying structure. One example of much recent interest is identifying differentially expressed genes in comparative microarray experiments. We propose a new approach aimed at optimally performing many hypothesis tests in a high-dimensional study. This approach estimates the Optimal Discovery Procedure (ODP), which has recently been introduced and theoretically shown …


Application Of A Multiple Testing Procedure Controlling The Proportion Of False Positives To Protein And Bacterial Data, Merrill D. Birkner, Alan E. Hubbard, Mark J. Van Der Laan Aug 2005

Application Of A Multiple Testing Procedure Controlling The Proportion Of False Positives To Protein And Bacterial Data, Merrill D. Birkner, Alan E. Hubbard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

Simultaneously testing multiple hypotheses is important in high-dimensional biological studies. In these situations, one is often interested in controlling the Type-I error rate, such as the proportion of false positives to total rejections (TPPFP) at a specific level, alpha. This article will present an application of the E-Bayes/Bootstrap TPPFP procedure, presented in van der Laan et al. (2005), which controls the tail probability of the proportion of false positives (TPPFP), on two biological datasets. The two data applications include firstly, the application to a mass-spectrometry dataset of two leukemia subtypes, AML and ALL. The protein data measurements include intensity and …


Analysis Of Affymetrix Genechip Data Using Amplified Rna, Leslie Cope, Scott M. Hartman, Hinrich W.H. Gohlmann, Jay P. Tiesman, Rafael A. Irizarry Aug 2005

Analysis Of Affymetrix Genechip Data Using Amplified Rna, Leslie Cope, Scott M. Hartman, Hinrich W.H. Gohlmann, Jay P. Tiesman, Rafael A. Irizarry

Johns Hopkins University, Dept. of Biostatistics Working Papers

The standard method of target synthesis for hybridization to Affymetrix GeneChip® expression microarrays requires a relatively large amount of input total RNA (1-15 micrograms). When small biological samples are collected by microdissection or other methods, amplification techniques are required to provide sufficient target for hybridization to expression arrays. One amplification technique used is to perform two successive rounds of T7-based in vitro transcription. However, the use of random primers required to re-generate cDNA from the first round transcription reaction results in shortened copies of the cDNA, and ultimately the cRNA, transcripts from which the 5' end is missing. In this …


New Statistical Paradigms Leading To Web-Based Tools For Clinical/Translational Science, Knut M. Wittkowski May 2005

New Statistical Paradigms Leading To Web-Based Tools For Clinical/Translational Science, Knut M. Wittkowski

COBRA Preprint Series

As the field of functional genetics and genomics is beginning to mature, we become confronted with new challenges. The constant drop in price for sequencing and gene expression profiling as well as the increasing number of genetic and genomic variables that can be measured makes it feasible to address more complex questions. The success with rare diseases caused by single loci or genes has provided us with a proof-of-concept that new therapies can be developed based on functional genomics and genetics.

Common diseases, however, typically involve genetic epistasis, genomic pathways, and proteomic pattern. Moreover, to better understand the underlying biologi-cal …


Searching For Differentially Expressed Gene Combinations, Marcel Dettling, Edward Gabrielson, Giovanni Parmigiani Mar 2005

Searching For Differentially Expressed Gene Combinations, Marcel Dettling, Edward Gabrielson, Giovanni Parmigiani

Johns Hopkins University, Dept. of Biostatistics Working Papers

Background: Comparison of mRNA expression levels across biological samples is a widely used approach in genomics. Available data-analytic tools for deriving comprehensive lists of differentially expressed genes rely on data summaries formed using each gene in isolation from others. These approaches ignore biological relationships among genes and may miss important biological insight provided by genomics data.

Methods: We propose a fast, easily interpretable and scalable approach for identifying pairs of genes that are differentially expressed across phenotypes or experimental conditions. These are defined as pairs for which there is detectable phenotype discrimination using the joint distribution, but not from either …


The Clustering Of Regression Models Method With Applications In Gene Expression Data, Li-Xuan Qin, Steven G. Self Jan 2005

The Clustering Of Regression Models Method With Applications In Gene Expression Data, Li-Xuan Qin, Steven G. Self

UW Biostatistics Working Paper Series

Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we propose a new model-based clustering method -- the clustering of regression models method, which groups genes that …


Cluster Analysis Of Genomic Data With Applications In R, Katherine S. Pollard, Mark J. Van Der Laan Jan 2005

Cluster Analysis Of Genomic Data With Applications In R, Katherine S. Pollard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

In this paper, we provide an overview of existing partitioning and hierarchical clustering algorithms in R. We discuss statistical issues and methods in choosing the number of clusters, the choice of clustering algorithm, and the choice of dissimilarity matrix. In particular, we illustrate how the bootstrap can be employed as a statistical method in cluster analysis to establish the reproducibility of the clusters and the overall variability of the followed procedure. We also show how to visualize a clustering result by plotting ordered dissimilarity matrices in R. We present a new R package, hopach, which implements the hybrid clustering method, …