Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Genetics and Genomics

Conditional Screening For Ultra-High Dimensional Covariates With Survival Outcomes, Hyokyoung Grace Hong, Jian Kang, Yi Li Mar 2016

Conditional Screening For Ultra-High Dimensional Covariates With Survival Outcomes, Hyokyoung Grace Hong, Jian Kang, Yi Li

The University of Michigan Department of Biostatistics Working Paper Series

Identifying important biomarkers that are predictive for cancer patients' prognosis is key in gaining better insights into the biological influences on the disease and has become a critical component of precision medicine. The emergence of large-scale biomedical survival studies, which typically involve excessive number of biomarkers, has brought high demand in designing efficient screening tools for selecting predictive biomarkers. The vast amount of biomarkers defies any existing variable selection methods via regularization. The recently developed variable screening methods, though powerful in many practical setting, fail to incorporate prior information on the importance of each biomarker and are less powerful in …


Set-Based Tests For Genetic Association In Longitudinal Studies, Zihuai He, Min Zhang, Seunggeun Lee, Jennifer A. Smith, Xiuqing Guo, Walter Palmas, Sharon L.R. Kardia, Ana V. Diez Roux, Bhramar Mukherjee Jan 2014

Set-Based Tests For Genetic Association In Longitudinal Studies, Zihuai He, Min Zhang, Seunggeun Lee, Jennifer A. Smith, Xiuqing Guo, Walter Palmas, Sharon L.R. Kardia, Ana V. Diez Roux, Bhramar Mukherjee

The University of Michigan Department of Biostatistics Working Paper Series

Genetic association studies with longitudinal markers of chronic diseases (e.g., blood pressure, body mass index) provide a valuable opportunity to explore how genetic variants affect traits over time by utilizing the full trajectory of longitudinal outcomes. Since these traits are likely influenced by the joint effect of multiple variants in a gene, a joint analysis of these variants considering linkage disequilibrium (LD) may help to explain additional phenotypic variation. In this article, we propose a longitudinal genetic random field model (LGRF), to test the association between a phenotype measured repeatedly during the course of an observational study and a set …


A Bayesian Method For Finding Interactions In Genomic Studies, Wei Chen, Debashis Ghosh, Trivellore E. Raghuanthan, Sharon Kardia Nov 2004

A Bayesian Method For Finding Interactions In Genomic Studies, Wei Chen, Debashis Ghosh, Trivellore E. Raghuanthan, Sharon Kardia

The University of Michigan Department of Biostatistics Working Paper Series

An important step in building a multiple regression model is the selection of predictors. In genomic and epidemiologic studies, datasets with a small sample size and a large number of predictors are common. In such settings, most standard methods for identifying a good subset of predictors are unstable. Furthermore, there is an increasing emphasis towards identification of interactions, which has not been studied much in the statistical literature. We propose a method, called BSI (Bayesian Selection of Interactions), for selecting predictors in a regression setting when the number of predictors is considerably larger than the sample size with a focus …


Finding Cancer Subtypes In Microarray Data Using Random Projections, Debashis Ghosh Oct 2004

Finding Cancer Subtypes In Microarray Data Using Random Projections, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

One of the benefits of profiling of cancer samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Such subgroups have typically been found in microarray data using hierarchical clustering. A major problem in interpretation of the output is determining the number of clusters. We approach the problem of determining disease subtypes using mixture models. A novel estimation procedure of the parameters in the mixture model is developed based on a combination of random projections and the expectation-maximization algorithm. Because the approach is probabilistic, our approach provides a measure for the number of true clusters …


Nonparametric Methods For Analyzing Replication Origins In Genomewide Data, Debashis Ghosh Jun 2004

Nonparametric Methods For Analyzing Replication Origins In Genomewide Data, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

Due to the advent of high-throughput genomic technology, it has become possible to globally monitor cellular activities on a genomewide basis. With these new methods, scientists can begin to address important biological questions. One such question involves the identification of replication origins, which are regions in chromosomes where DNA replication is initiated. In addition, one hypothesis regarding replication origins is that their locations are non-random throughout the genome. In this article, we develop methods for identification of and cluster inference regarding replication origins involving genomewide expression data. We compare several nonparametric regression methods for the identification of replication origin locations. …


Semiparametric Methods For Identification Of Tumor Progression Genes From Microarray Data, Debashis Ghosh, Arul Chinnaiyan Jun 2004

Semiparametric Methods For Identification Of Tumor Progression Genes From Microarray Data, Debashis Ghosh, Arul Chinnaiyan

The University of Michigan Department of Biostatistics Working Paper Series

The use of microarray data has become quite commonplace in medical and scientific experiments. We focus here on microarray data generated from cancer studies. It is potentially important for the discovery of biomarkers to identify genes whose expression levels correlate with tumor progression. In this article, we develop statistical procedures for the identification of such genes, which we term tumor progression genes. Two methods are considered in this paper. The first is use of a proportional odds procedure, combined with false discovery rate estimation techniques to adjust for the multiple testing problem. The second method is based on order-restricted estimation …


The False Discovery Rate: A Variable Selection Perspective, Debashis Ghosh, Wei Chen, Trivellore E. Raghuanthan Jun 2004

The False Discovery Rate: A Variable Selection Perspective, Debashis Ghosh, Wei Chen, Trivellore E. Raghuanthan

The University of Michigan Department of Biostatistics Working Paper Series

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to …


Mixture Models For Assessing Differential Expression In Complex Tissues Using Microarray Data, Debashis Ghosh Feb 2004

Mixture Models For Assessing Differential Expression In Complex Tissues Using Microarray Data, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

The use of DNA microarrays has become quite popular in many scientific and medical disciplines, such as in cancer research. One common goal of these studies is to determine which genes are differentially expressed between cancer and healthy tissue, or more generally, between two experimental conditions. A major complication in the molecular profiling of tumors using gene expression data is that the data represent a combination of tumor and normal cells. Much of the methodology developed for assessing differential expression with microarray data has assumed that tissue samples are homogeneous. In this article, we outline a general framework for determining …


Cluster Stability Scores For Microarray Data In Cancer Studies, Mark Smolkin, Debashis Ghosh Jun 2003

Cluster Stability Scores For Microarray Data In Cancer Studies, Mark Smolkin, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the primary analytical tool used to define disease subtypes from microarray experiments in cancer settings. Assessing cluster reliability poses a major complication in analyzing output from these procedures. While much work has been done on assessing the global question of number of clusters in a dataset, relatively little research exists on assessing stability of individual clusters. A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will …