Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane Oct 2017

Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane

Biostatistics Faculty Publications

Introduction—We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci.

Methods—We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions.

Results—We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ …


Effect Of Genetic Background On The Dystrophic Phenotype In Mdx Mice., William D Coley, Laurent Bogdanik, Maria Candida Vila, Qing Yu, Terence A Partridge, Kanneboyina Nagaraju, +12 Additional Authors Nov 2015

Effect Of Genetic Background On The Dystrophic Phenotype In Mdx Mice., William D Coley, Laurent Bogdanik, Maria Candida Vila, Qing Yu, Terence A Partridge, Kanneboyina Nagaraju, +12 Additional Authors

Genomics and Precision Medicine Faculty Publications

Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them to the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared to their respective …