Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Organelle_Pba, A Pipeline For Assembling Chloroplast And Mitochondrial Genomes From Pacbio Dna Sequencing Data, Aboozar Soorni, David Haak, David Zaitlin, Aureliano Bombarely Jan 2017

Organelle_Pba, A Pipeline For Assembling Chloroplast And Mitochondrial Genomes From Pacbio Dna Sequencing Data, Aboozar Soorni, David Haak, David Zaitlin, Aureliano Bombarely

Kentucky Tobacco Research and Development Center Faculty Publications

Background: The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present.

Results: We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and …


Metagomics: A Web-Based Tool For Peptide-Centric Functional And Taxonomic Analysis Of Metaproteomics Data, Michael Riffle, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, Daniel Jaschob, William S. Noble, Brook L. Nunn Jan 2017

Metagomics: A Web-Based Tool For Peptide-Centric Functional And Taxonomic Analysis Of Metaproteomics Data, Michael Riffle, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, Daniel Jaschob, William S. Noble, Brook L. Nunn

OES Faculty Publications

Metaproteomics is the characterization of all proteins being expressed by a community of organisms in a complex biological sample at a single point in time. Applications of metaproteomics range from the comparative analysis of environmental samples (such as ocean water and soil) to microbiome data from multicellular organisms (such as the human gut). Metaproteomics research is often focused on the quantitative functional makeup of the metaproteome and which organisms are making those proteins. That is: What are the functions of the currently expressed proteins? How much of the metaproteome is associated with those functions? And, which microorganisms are expressing the …